📄 generativefeedback.java
字号:
package dragon.ir.search.feedback;import dragon.ir.index.*;import dragon.ir.query.*;import dragon.ir.search.*;import dragon.nlp.compare.*;import dragon.nlp.Token;import dragon.util.SortedArray;import java.util.ArrayList;/** * <p>Model-based Feedback</p> * <p></p> * <p>Copyright: Copyright (c) 2005</p> * <p>Company: IST, Drexel University</p> * @author Davis Zhou * @version 1.0 */public class GenerativeFeedback extends AbstractFeedback{ private int expandTermNum; private double bkgCoeffi; public GenerativeFeedback(Searcher searcher, int feedbackDocNum, int expandTermNum, double feedbackCoeffi, double bkgCoeffi) { super(searcher,feedbackDocNum,feedbackCoeffi); this.expandTermNum =expandTermNum; this.bkgCoeffi =bkgCoeffi; } protected ArrayList estimateNewQueryModel(IRQuery oldQuery){ IndexReader indexReader; SortedArray termList; ArrayList newPredicateList; SimpleTermPredicate curPredicate; Token curToken; IRDoc curDoc; int[] arrIndex, arrFreq; int docNum, predicateNum, iterationNum, i, j; double[] arrProb, arrCollectionProb; double weightSum, collectionTermCount; indexReader=searcher.getIndexReader(); searcher.search(oldQuery); docNum=feedbackDocNum<searcher.getRetrievedDocNum()?feedbackDocNum:searcher.getRetrievedDocNum(); if(docNum==0) return null; //prepare data for EM termList=new SortedArray(new IndexComparator()); for (i = 0; i <docNum; i++) { curDoc=searcher.getIRDoc(i); arrIndex = indexReader.getTermIndexList(curDoc.getIndex()); arrFreq=indexReader.getTermFrequencyList(curDoc.getIndex()); for (j = 0; j < arrIndex.length; j++){ curToken=new Token(null); curToken.setIndex(arrIndex[j]); curToken.setFrequency(arrFreq[j]); if(!termList.add(curToken)){ ((Token)termList.get(termList.insertedPos())).addFrequency(curToken.getFrequency()); } } } //initialization iterationNum=15; arrProb=new double[termList.size()]; arrCollectionProb=new double[termList.size()]; collectionTermCount=indexReader.getCollection().getTermCount(); for(i=0;i<termList.size();i++){ curToken=(Token)termList.get(i); curToken.setWeight(1.0/termList.size()); arrCollectionProb[i]=bkgCoeffi*indexReader.getIRTerm(curToken.getIndex()).getFrequency()/collectionTermCount; } //iteration for(i=0;i<iterationNum;i++){ weightSum=0; for(j=0;j<termList.size();j++){ curToken=(Token)termList.get(j); arrProb[j]=(1-bkgCoeffi)*curToken.getWeight()/((1-bkgCoeffi)*curToken.getWeight()+arrCollectionProb[j])*curToken.getFrequency(); weightSum+=arrProb[j]; } for(j=0;j<termList.size();j++) ((Token)termList.get(j)).setWeight(arrProb[j]/weightSum); } //build new query termList.setComparator(new WeightComparator(true)); predicateNum=oldQuery.getChildNum()+expandTermNum<termList.size()? oldQuery.getChildNum()+expandTermNum:termList.size(); newPredicateList=new ArrayList(predicateNum); weightSum=0; for(i=0;i<predicateNum;i++) weightSum+=((Token)termList.get(i)).getWeight(); for(i=0;i<predicateNum;i++){ curToken=(Token)termList.get(i); curPredicate=buildSimpleTermPredicate(curToken.getIndex(),curToken.getWeight()/weightSum); newPredicateList.add(curPredicate); } return newPredicateList; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -