⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 generativefeedback.java

📁 dragontoolkit用于机器学习
💻 JAVA
字号:
package dragon.ir.search.feedback;import dragon.ir.index.*;import dragon.ir.query.*;import dragon.ir.search.*;import dragon.nlp.compare.*;import dragon.nlp.Token;import dragon.util.SortedArray;import java.util.ArrayList;/** * <p>Model-based Feedback</p> * <p></p> * <p>Copyright: Copyright (c) 2005</p> * <p>Company: IST, Drexel University</p> * @author Davis Zhou * @version 1.0 */public class GenerativeFeedback extends AbstractFeedback{    private int expandTermNum;    private double bkgCoeffi;    public GenerativeFeedback(Searcher searcher, int feedbackDocNum, int expandTermNum, double feedbackCoeffi, double bkgCoeffi) {        super(searcher,feedbackDocNum,feedbackCoeffi);        this.expandTermNum =expandTermNum;        this.bkgCoeffi =bkgCoeffi;    }    protected ArrayList estimateNewQueryModel(IRQuery oldQuery){        IndexReader indexReader;        SortedArray termList;        ArrayList newPredicateList;        SimpleTermPredicate curPredicate;        Token curToken;        IRDoc curDoc;        int[] arrIndex, arrFreq;        int docNum, predicateNum, iterationNum, i, j;        double[] arrProb, arrCollectionProb;        double weightSum, collectionTermCount;        indexReader=searcher.getIndexReader();        searcher.search(oldQuery);        docNum=feedbackDocNum<searcher.getRetrievedDocNum()?feedbackDocNum:searcher.getRetrievedDocNum();        if(docNum==0) return null;        //prepare data for EM        termList=new SortedArray(new IndexComparator());        for (i = 0; i <docNum; i++) {            curDoc=searcher.getIRDoc(i);            arrIndex = indexReader.getTermIndexList(curDoc.getIndex());            arrFreq=indexReader.getTermFrequencyList(curDoc.getIndex());            for (j = 0; j < arrIndex.length; j++){                curToken=new Token(null);                curToken.setIndex(arrIndex[j]);                curToken.setFrequency(arrFreq[j]);                if(!termList.add(curToken)){                    ((Token)termList.get(termList.insertedPos())).addFrequency(curToken.getFrequency());                }            }        }        //initialization        iterationNum=15;        arrProb=new double[termList.size()];        arrCollectionProb=new double[termList.size()];        collectionTermCount=indexReader.getCollection().getTermCount();        for(i=0;i<termList.size();i++){            curToken=(Token)termList.get(i);            curToken.setWeight(1.0/termList.size());            arrCollectionProb[i]=bkgCoeffi*indexReader.getIRTerm(curToken.getIndex()).getFrequency()/collectionTermCount;        }        //iteration        for(i=0;i<iterationNum;i++){            weightSum=0;            for(j=0;j<termList.size();j++){                curToken=(Token)termList.get(j);                arrProb[j]=(1-bkgCoeffi)*curToken.getWeight()/((1-bkgCoeffi)*curToken.getWeight()+arrCollectionProb[j])*curToken.getFrequency();                weightSum+=arrProb[j];            }            for(j=0;j<termList.size();j++)                ((Token)termList.get(j)).setWeight(arrProb[j]/weightSum);        }        //build new query        termList.setComparator(new WeightComparator(true));        predicateNum=oldQuery.getChildNum()+expandTermNum<termList.size()? oldQuery.getChildNum()+expandTermNum:termList.size();        newPredicateList=new ArrayList(predicateNum);        weightSum=0;        for(i=0;i<predicateNum;i++) weightSum+=((Token)termList.get(i)).getWeight();        for(i=0;i<predicateNum;i++){            curToken=(Token)termList.get(i);            curPredicate=buildSimpleTermPredicate(curToken.getIndex(),curToken.getWeight()/weightSum);            newPredicateList.add(curPredicate);        }        return newPredicateList;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -