📄 clustermodel.java
字号:
package dragon.ir.clustering.clustermodel;
import dragon.ir.clustering.*;
import dragon.ir.clustering.featurefilter.FeatureFilter;
import dragon.ir.index.*;
/**
* <p>Interface of cluster model which compute the distance between a document and a document cluster</p>
* <p></p>
* <p>Copyright: Copyright (c) 2005</p>
* <p>Company: IST, Drexel University</p>
* @author Davis Zhou
* @version 1.0
*/
public interface ClusterModel {
/**
* @param doc the document
* @param cluster the document cluster
* @return the distance between the document and the cluster
*/
public double getDistance(IRDoc doc, DocCluster cluster);
public double getDistance(IRDoc doc, int clusterNo);
/**
* Iterative partional approaches (e.g. K-Means) need to re-compute the cetroid of each cluster after each iteration. This method gives
* the chance to re-compute the centroid.
* @param cluster the new cluster
*/
public void setDocCluster(DocCluster cluster);
/**
* This method is equal to calling the setDocCluster method for all clusters.
* @param clusterSet all new clusters
*/
public void setDocClusters(DocClusterSet clusterSet);
public int getClusterNum();
/**
* @param clusterNum the number of clusters
*/
public void setClusterNum(int clusterNum);
/**
* A feature selector is set. After that, the excluded features do not count in cluster model any more.
* @param selector the feature selector
*/
public void setFeatureFilter(FeatureFilter filter);
/**
* @return the feature selector used for the cluster model
*/
public FeatureFilter getFeatureFilter();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -