⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classifier.java

📁 dragontoolkit用于机器学习
💻 JAVA
字号:
package dragon.ir.classification;import dragon.ir.classification.featureselection.FeatureSelector;import dragon.ir.index.*;import dragon.matrix.Row;/** * <p>Interface of Text Classifier</p> * <p></p> * <p>Copyright: Copyright (c) 2005</p> * <p>Company: IST, Drexel University</p> * @author Davis Zhou * @version 1.0 */public interface Classifier {    /**     * @return the index reader the classifier iw working on     */    public IndexReader getIndexReader();    /**     * @return the feature selector the current classifier is using     */    public FeatureSelector getFeatureSelector();    /**     * @param selector the feature selector for the classifier.     */    public void setFeatureSelector(FeatureSelector selector);    /**     * This method trains the classifier with the training document set.     * @param trainingDocSet training document set     */    public void train(DocClassSet trainingDocSet);        /**     * This method trains the classifier with the training document set and validating document set.     * @param trainingDocSet training document set     * @param validatingDocSet validating document set     */    public void train(DocClassSet trainingDocSet, DocClassSet validatingDocSet);    /**     * This method uses the trained model to classify the testing documents. The train method should be called before calling this method.     * @param testingDocs testing document set     * @return classified testing document set     */    public DocClassSet classify(DocClass testingDocs);    /**     * This method trains the classifier with the training document set and then using the trained model to classify the testing documents.     * @param trainingDocSet training document set     * @param testingDocs testing document set     * @return classified testing document set     */    public DocClassSet classify(DocClassSet trainingDocSet, DocClass testingDocs);    /**     * @param trainingDocSet the training document set     * @param validatingDocSet the validation document set, usually for avoiding the overfitting problem     * @param testingDocs the testing document set     * @return classified testing document set     */    public DocClassSet classify(DocClassSet trainingDocSet, DocClassSet validatingDocSet, DocClass testingDocs);    /**     * Classify one particular document     * @param doc the index of the document is stored in the IRDoc object     * @return the index of the category of this document. The index starts from zero.     */    public int classify(IRDoc doc);        /**     * Classify one particular document     * @param doc document represented by a Row object     * @return the index of the category of this document. The index starts from zero.     */    public int classify(Row doc);    /**     * Gets the label of a given document category     * @param index the index of the category     * @return the label of the category     */    public String getClassLabel(int index);    /**     * Rank all class labels. The classify(Row doc) method should be called before calling this method.     * @return the ranking of class labels. The first and last element of the returned array contain the most possible      * label and the least possible label, respectively.     */    public int[] rank();        /**     * Save the trained classifier model to a file which can be used to restore the classifier later. If the model is not trained yet, this     * method does nothing. The classifier restored from this model file later can only execute the method classify(Row doc) to determine the     * label of a document.     * @param modelFile output file name     */    public void saveModel(String modelFile);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -