⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lossmulticlassdecoder.java

📁 dragontoolkit用于机器学习
💻 JAVA
字号:
package dragon.ir.classification.multiclass;import dragon.matrix.vector.DoubleVector;/** * <p>Loss-based Multi-class Decoder</p> * <p>A multi-class decoder which predict the category of an example by minimizing the loss. More details can be found in the * following paper:<br> * Allwein, E.L., Schapire, R.E., and Singer, Y., "Reducing multiclass to binary: A unifying approach for margin classifiers," * Journal of Machine Learning Research, 1:113–141, 2000.</p> * <p>Copyright: Copyright (c) 2005</p> * <p>Company: IST, Drexel University</p> * @author Davis Zhou * @version 1.0 */public class LossMultiClassDecoder implements MultiClassDecoder, java.io.Serializable{	private static final long serialVersionUID = 1L;	private LossFunction lossFunc;    private DoubleVector lossVector;    private int[] rankings;    public LossMultiClassDecoder(LossFunction lossFunc) {        this.lossFunc =lossFunc;    }    public int decode(CodeMatrix matrix, double[] binClassifierResults){                int i, j;        if(binClassifierResults.length!=matrix.getClassifierNum()){            System.out.println("The input data are not valid. Number of binary classifiers is not consistent.");            return -1;        }        lossVector=new DoubleVector(matrix.getClassNum());        for(i=0;i<matrix.getClassNum();i++){            for(j=0;j<matrix.getClassifierNum();j++)                lossVector.add(i,lossFunc.loss(matrix.getCode(i,j)*binClassifierResults[j]));        }        rankings=lossVector.rank(false);        return rankings[0];    }        public int[] rank(){    	return rankings;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -