⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpilib.h

📁 RSA算法的VC源码
💻 H
📖 第 1 页 / 共 2 页
字号:

#else	/* not PEASANT, MERRITT, UPTON */
#ifdef SMITH
/* Define C names for Smith's modmult primitives. */
#define stage_modulus	stage_smith_modulus
#define mp_modmult	smith_modmult
#define modmult_burn	smith_burn
#define SLOP_BITS	SMITH_SLOP_BITS

#endif	/* SMITH */
#endif	/* UPTON */
#endif	/* MERRITT */
#endif	/* PEASANT */


#define mp_shift_left(r1) mp_rotate_left(r1,(boolean)0)
	/* multiprecision shift left 1 bit */

#define mp_add(r1,r2) mp_addc(r1,r2,(boolean)0)
	/* multiprecision add with no carry */

#define mp_sub(r1,r2) mp_subb(r1,r2,(boolean)0)
	/* multiprecision subtract with no borrow */

#define mp_abs(r) (mp_tstminus(r) ? (mp_neg(r),TRUE) : FALSE)

#define msub(r,m) if (mp_compare(r,m) >= 0) mp_sub(r,m)
	/* Prevents r from getting bigger than modulus m */

#define testeq(r,i)	\
	( (lsunit(r)==(i)) && (significance(r)<=1) )

#define testne(r,i)	\
	( (lsunit(r)!=(i)) || (significance(r)>1) )

#define testge(r,i)	\
	( (lsunit(r)>=(i)) || (significance(r)>1) )

#define testle(r,i)	\
	( (lsunit(r)<=(i)) && (significance(r)<=1) )

#define mp_square(r1,r2) mp_mult(r1,r2,r2)
	/* Square r2, returning product in r1 */

#define mp_modsquare(r1,r2) mp_modmult(r1,r2,r2)
	/* Square r2, returning modulo'ed product in r1 */

#define countbytes(r) ((countbits(r)+7)>>3)

/*	SLOP_BITS is how many "carry bits" to allow for intermediate
	calculation results to exceed the size of the modulus.
	It is used by modexp to give some overflow elbow room for
	modmult to use to perform modulo operations with the modulus.
	The number of slop bits required is determined by the modmult
	algorithm.  The Russian peasant modmult algorithm only requires
	1 slop bit, for example.  Note that if we use an external assembly
	modmult routine, SLOP_BITS may be meaningless or may be defined in a
	non-constant manner.
*/
#define PEASANT_SLOP_BITS	1
#define MERRITT_SLOP_BITS	UNITSIZE
#define UPTON_SLOP_BITS	(UNITSIZE/2)
#ifdef  mp_smul /* old version requires MS word = 0 */
#define SMITH_SLOP_BITS	UNITSIZE
#else           /* mp_smula or C version of mp_smul */
#define SMITH_SLOP_BITS	0
#endif /* mp_smul */

/*	MAX_BIT_PRECISION is upper limit that assembly primitives can handle.
	It must be less than 32704 bits, or 4088 bytes.  It should be an
	integer multiple of UNITSIZE*2.
*/
#if (SLOP_BITS > 0) || !defined(MIT)
#define MAX_BIT_PRECISION (2048+(2*UNITSIZE))
#else
#define MAX_BIT_PRECISION 2048
#endif

#define MAX_BYTE_PRECISION (MAX_BIT_PRECISION/8)
#define MAX_UNIT_PRECISION (MAX_BIT_PRECISION/UNITSIZE)// 2048/8=256


/* global_precision is the unit precision last set by set_precision */
extern short global_precision;


/*	The "bit sniffer" macros all begin sniffing at the MSB.
	They are used internally by all the various multiply, divide, 
	modulo, exponentiation, and square root functions.
*/
#define sniff_bit(bptr,bitmask)	(*(bptr) & bitmask)

#define init_bitsniffer(bptr,bitmask,prec,bits) \
{ normalize(bptr,prec); \
  if (!prec) \
    return(0); \
  bits = units2bits(prec); \
  make_msbptr(bptr,prec); bitmask = uppermostbit; \
  while (!sniff_bit(bptr,bitmask)) \
  { bitmask >>= 1; bits--; \
  } \
}

#define bump_bitsniffer(bptr,bitmask) \
{ if (!(bitmask >>= 1)) \
  { bitmask = uppermostbit; \
	post_lowerunit(bptr); \
  } \
}

/* bump_2bitsniffers is used internally by mp_udiv. */
#define bump_2bitsniffers(bptr,bptr2,bitmask) \
{ if (!(bitmask >>= 1)) \
  { bitmask = uppermostbit; \
    post_lowerunit(bptr); \
    post_lowerunit(bptr2); \
  } \
}

/* stuff_bit is used internally by mp_udiv and mp_sqrt. */
#define stuff_bit(bptr,bitmask)	*(bptr) |= bitmask


boolean mp_addc
	(register unitptr r1,register unitptr r2,register boolean carry);
	/* multiprecision add with carry r2 to r1, result in r1 */

boolean mp_subb
	(register unitptr r1,register unitptr r2,register boolean borrow);
	/* multiprecision subtract with borrow, r2 from r1, result in r1 */

boolean mp_rotate_left(register unitptr r1,register boolean carry);
	/* multiprecision rotate left 1 bit with carry, result in r1. */

void mp_shift_right_bits(register unitptr r1,register short bits);
	/* multiprecision shift right bits, result in r1. */

short mp_compare(register unitptr r1,register unitptr r2);
	/* Compares registers *r1, *r2, and returns -1, 0, or 1 */

boolean mp_inc(register unitptr r);
	/* Increment multiprecision integer r. */

boolean mp_dec(register unitptr r);
	/* Decrement multiprecision integer r. */

void mp_neg(register unitptr r);
	/* Compute 2's complement, the arithmetic negative, of r */

#ifndef mp_move
#define mp_move(d,s)    memcpy((void*)(d), (void*)(s), \
		units2bytes(global_precision))
#endif  
#ifndef unitfill0
#define unitfill0(r,ct) memset((void*)(r), 0, units2bytes(ct))
#endif

#define empty_array(r)  unitfill0(r, sizeof(r)/sizeof(r[0])/sizeof(unit))
#define mp_init0(r) mp_init(r,0)

//extern unsigned char *InputChar;
//extern CString strTemp;
//extern UINT random(UINT nMax);	//LZH
void mp_init(register unitptr r, word16 value);
	/* Init multiprecision register r with short value. */

short significance(register unitptr r);
	/* Returns number of significant units in r */

int mp_udiv(register unitptr remainder,register unitptr quotient,
	register unitptr dividend,register unitptr divisor);
	/* Unsigned divide, treats both operands as positive. */

int mp_recip(register unitptr quotient,register unitptr divisor);
	/* Compute reciprocal as 1/divisor.  Used by faster modmult. */

int mp_div(register unitptr remainder,register unitptr quotient,
	register unitptr dividend,register unitptr divisor);
	/* Signed divide, either or both operands may be negative. */

word16 mp_shortdiv(register unitptr quotient,
	register unitptr dividend,register word16 divisor);
	/* Returns short remainder of unsigned divide. */

int mp_mod(register unitptr remainder,
	register unitptr dividend,register unitptr divisor);
	/* Unsigned divide, treats both operands as positive. */

word16 mp_shortmod(register unitptr dividend,register word16 divisor);
	/* Just returns short remainder of unsigned divide. */

int mp_mult(register unitptr prod,
	register unitptr multiplicand,register unitptr multiplier);
	/* Computes multiprecision prod = multiplicand * multiplier */

int countbits(unitptr r);
	/* Returns number of significant bits in r. */

int stage_peasant_modulus(unitptr n);
int stage_merritt_modulus(unitptr n);
int stage_upton_modulus(unitptr n);
int stage_smith_modulus(unitptr n);
	/* Must pass modulus to stage_modulus before calling modmult. */

int peasant_modmult(register unitptr prod,
	unitptr multiplicand,register unitptr multiplier);
int merritt_modmult(register unitptr prod,
	unitptr multiplicand,register unitptr multiplier);
int upton_modmult(register unitptr prod,
	unitptr multiplicand,register unitptr multiplier);
int smith_modmult(register unitptr prod,
	unitptr multiplicand,register unitptr multiplier);
	/* Performs combined multiply/modulo operation, with global modulus */
 
 

int mp_modexp(register unitptr expout,register unitptr expin,
	register unitptr exponent,register unitptr modulus);
	/* Combined exponentiation/modulo algorithm. */

int mp_modexp_crt(unitptr expout, unitptr expin,
	unitptr p, unitptr q, unitptr ep, unitptr eq, unitptr u);
	/* exponentiation and modulo using Chinese Remainder Theorem */

/****************** end of MPI library ****************************/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -