📄 main.m
字号:
% This script simulates the classical turbo encoding-decoding system.
% It simulates parallel concatenated convolutional codes.
% Two component rate 1/2 RSC (Recursive Systematic Convolutional) component encoders are assumed.
% First encoder is terminated with tails bits. (Info + tail) bits are scrambled and passed to
% the second encoder, while second encoder is left open without tail bits of itself.
%
% Random information bits are modulated into +1/-1, and transmitted through a AWGN channel.
% Interleavers are randomly generated for each frame.
%
% Log-MAP algorithm without quantization or approximation is used.
% By making use of ln(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))),
% the Log-MAP can be simplified with a look-up table for the correction function.
% If use approximation ln(e^x+e^y) = max(x,y), it becomes MAX-Log-MAP.
%
% Copyright Nov 1998, Yufei Wu
% MPRG lab, Virginia Tech.
% for academic use only
clear all
% Write display messages to a text file
diary turbo_sova.txt
set_sim_consts
global sim_consts;
% Choose decoding algorithm
% dec_alg = input(' Please enter the decoding algorithm. (0:Log-MAP, 1:SOVA) default 0 ');
% if isempty(dec_alg)
dec_alg = sim_consts.dec_alg;
% end
% Frame size
% L_total = input(' Please enter the frame size (= info + tail, default: 400) ');
% if isempty(L_total)
L_total = sim_consts.L_total; % infomation bits plus tail bits
% end
% Code generator
% g = input(' Please enter code generator: ( default: g = [1 1 1; 1 0 1 ] ) ');
% if isempty(g)
g = sim_consts.g;
% end
%g = [1 1 0 1; 1 1 1 1];
%g = [1 1 1 1 1; 1 0 0 0 1];
[n,K] = size(g);
m = K - 1;
nstates = 2^m;
%puncture = 0, puncturing into rate 1/2;
%puncture = 1, no puncturing
% puncture = input(' Please choose punctured / unpunctured (0/1): default 0 ');
% if isempty(puncture)
puncture = sim_consts.puncture;
% end
% Code rate
rate = 1/(2+puncture);
% Fading amplitude; a=1 in AWGN channel
a = sim_consts.a;
% Number of iterations
% niter = input(' Please enter number of iterations for each frame: default 5 ');
% if isempty(niter)
niter = sim_consts.niter;
% end
% Number of frame errors to count as a stop criterior
% ferrlim = input(' Please enter number of frame errors to terminate: default 15 ');
% if isempty(ferrlim)
ferrlim = sim_consts.ferrlim;
% end
% EbN0db = input(' Please enter Eb/N0 in dB : default [2.0] ');
% if isempty(EbN0db)
EbN0db = sim_consts.EbN0;
% end
fprintf('\n\n----------------------------------------------------\n');
if dec_alg == 0
fprintf(' === Log-MAP decoder === \n');
else
fprintf(' === SOVA decoder === \n');
end
fprintf(' Frame size = %6d\n',L_total);
fprintf(' code generator: \n');
for i = 1:n
for jj = 1:K
fprintf( '%6d', g(i,jj));
end
fprintf('\n');
end
if puncture==0
fprintf(' Punctured, code rate = 1/2 \n');
else
fprintf(' Unpunctured, code rate = 1/3 \n');
end
fprintf(' iteration number = %6d\n', niter);
fprintf(' terminate frame errors = %6d\n', ferrlim);
fprintf(' Eb / N0 (dB) = ');
for i = 1:length(EbN0db)
fprintf('%10.2f',EbN0db(i));
end
fprintf('\n----------------------------------------------------\n\n');
fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n');
for nEN = 1:length(EbN0db)
snr = EbN0db(nEN)-13.8;
en = 10^(EbN0db(nEN)/10); % convert Eb/N0 from unit db to normal numbers
L_c = 4*a*en*rate; % reliability value of the channel
sigma = 1/sqrt(2*rate*en); % standard deviation of AWGN noise
% Clear bit error counter and frame error counter
errs(nEN,1:niter) = zeros(1,niter);
nferr(nEN,1:niter) = zeros(1,niter);
nframe = 0; % clear counter of transmitted frames
while ( 1 )
% block count
nframe = nframe + 1;
% info source
x = round(rand(1, L_total-m)); % info. bits
% turbo code
[temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping
en_output = encoderm( x, g, alpha, puncture ) ; % encoder output (+1/-1)
% rate match
L_b = 88*sim_consts.cNumber*sim_consts.tsNumber*sim_consts.subFrames;
en_output(size(en_output,2)+1:L_b) = en_output(size(en_output,2))*ones(1,L_b-size(en_output,2));
clear L_b;
% modulater
for kk=1:length(en_output)/2
modulator_out(kk) = en_output((kk-1)*2+1) + j*en_output(kk*2) ;
end
clear kk;
% through the channel
% spread, frame, channel, estimate, JD, deframe and despread
s_all = modulator_out(:);
L_f = 44*sim_consts.cNumber*sim_consts.tsNumber*sim_consts.subFrames;
L_sf = 44*sim_consts.cNumber*sim_consts.tsNumber;
r_all = zeros(L_f,1);
for fIdx = 1:sim_consts.subFrames
s = zeros(L_sf, 1);
s(:) = s_all((fIdx-1)*L_sf+1:fIdx*L_sf);
r_middle= send(s,snr); % child function, type 'help send' to see the detail
r_all((fIdx-1)*L_sf+1:fIdx*L_sf) = r_middle(:);
clear s r_middle;
end
clear L_sf;
% demodulation
for i=1:L_f
r_s((i-1)*2+1) = real(r_all(i)) ;
r_s(i*2) = imag(r_all(i)) ;
end
clear L_f;
% turbo decode
ry = zeros(1,sim_consts.L_total/rate);
ry(:) = r_s(1:sim_consts.L_total/rate);
yk = demultiplex(ry,alpha,puncture); % demultiplex to get input for decoder 1 and 2
% Scale the received bits
rec_s = 0.5*L_c*yk;
% Initialize extrinsic information
L_e(1:L_total) = zeros(1,L_total);
for iter = 1:niter
% Decoder one
L_a(alpha) = L_e; % a priori info.
if dec_alg == 0
L_all = logmapo(rec_s(1,:), g, L_a, 1); % complete info.
else
L_all = sova0(rec_s(1,:), g, L_a, 1); % complete info.
end
L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a; % extrinsic info.
% Decoder two
L_a = L_e(alpha); % a priori info.
if dec_alg == 0
L_all = logmapo(rec_s(2,:), g, L_a, 2); % complete info.
else
L_all = sova0(rec_s(2,:), g, L_a, 2); % complete info.
end
L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a; % extrinsic info.
% Estimate the info. bits
xhat(alpha) = (sign(L_all)+1)/2;
% Number of bit errors in current iteration
err(iter) = length(find(xhat(1:L_total-m)~=x));
% Count frame errors for the current iteration
if err(iter)>0
nferr(nEN,iter) = nferr(nEN,iter)+1;
end
end %iter
% Total number of bit errors for all iterations
errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter);
if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim | errs(nEN, sim_consts.niter) > sim_consts.errAll | nframe == sim_consts.nframeAll
% Bit error rate
ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total-m);
% Frame error rate
fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe;
% Display intermediate results in process
fprintf('************** Eb/N0 = %5.2f db **************\n', EbN0db(nEN));
fprintf('Frame size = %d, rate 1/%d. \n', L_total, 2+puncture);
fprintf('%d frames transmitted, %d frames in error.\n', nframe, nferr(nEN, niter));
fprintf('Bit Error Rate (from iteration 1 to iteration %d):\n', niter);
for i=1:niter
fprintf('%8.4e ', ber(nEN,i));
end
fprintf('\n');
fprintf('Frame Error Rate (from iteration 1 to iteration %d):\n', niter);
for i=1:niter
fprintf('%8.4e ', fer(nEN,i));
end
fprintf('\n');
fprintf('***********************************************\n\n');
% Save intermediate results
save turbo_sova EbN0db ber fer
end
if errs(nEN, sim_consts.niter) > sim_consts.errAll | nferr(nEN, niter)>sim_consts.ferrlim | nframe > sim_consts.nframeAll
break;
end
end %while
end %nEN
diary off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -