📄 sdir2cas.m
字号:
function [C,B,A] = sdir2cas(b,a);
% DIRECT-form to CASCADE-form conversion in s-plane
% -------------------------------------------------
% [C,B,A] = sdir2cas(b,a)
% C = gain coefficient
% B = K by 3 matrix of real coefficients containing bk's
% A = K by 3 matrix of real coefficients containing ak's
% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
%
Na = length(a)-1; Nb = length(b)-1;
% compute gain coefficient C
b0 = b(1); b = b/b0;
a0 = a(1); a = a/a0;
C = b0/a0;
%
% Denominator second-order sections:
p= cplxpair(roots(a)); K = floor(Na/2);
if K*2 == Na % Computation when Na is even
A = zeros(K,3);
for n=1:2:Na
Arow = p(n:1:n+1,:);
Arow = poly(Arow);
A(fix((n+1)/2),:) = real(Arow);
end
elseif Na == 1 % Computation when Na = 1
A = [0 real(poly(p))];
else % Computation when Na is odd and > 1
A = zeros(K+1,3);
for n=1:2:2*K
Arow = p(n:1:n+1,:);
Arow = poly(Arow);
A(fix((n+1)/2),:) = real(Arow);
end
A(K+1,:) = [0 real(poly(p(Na)))];
end
% Numerator second-order sections:
z = cplxpair(roots(b)); K = floor(Nb/2);
if Nb == 0 % Computation when Nb = 0
B = [0 0 poly(z)];
elseif K*2 == Nb % Computation when Nb is even
B = zeros(K,3);
for n=1:2:Nb
Brow = z(n:1:n+1,:);
Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);
end
elseif Nb == 1 % Computation when Nb = 1
B = [0 real(poly(z))];
else % Computation when Nb is odd and > 1
B = zeros(K+1,3);
for n=1:2:2*K
Brow = z(n:1:n+1,:);
Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);
end
B(K+1,:) = [0 real(poly(z(Nb)))];
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -