⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hid-core.c

📁 基于S3CEB2410平台LINUX操作系统下 USB驱动源代码
💻 C
📖 第 1 页 / 共 3 页
字号:
				if (hid_add_usage(parser, n)) {					dbg("hid_add_usage failed\n");					return -1;				}			return 0;		default:			dbg("unknown local item tag 0x%x", item->tag);			return 0;	}	return 0;}/* * Process a main item. */static int hid_parser_main(struct hid_parser *parser, struct hid_item *item){	__u32 data;	int ret;	data = item_udata(item);	switch (item->tag) {		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:			ret = open_collection(parser, data & 3);			break;		case HID_MAIN_ITEM_TAG_END_COLLECTION:			ret = close_collection(parser);			break;		case HID_MAIN_ITEM_TAG_INPUT:			ret = hid_add_field(parser, HID_INPUT_REPORT, data);			break;		case HID_MAIN_ITEM_TAG_OUTPUT:			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);			break;		case HID_MAIN_ITEM_TAG_FEATURE:			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);			break;		default:			dbg("unknown main item tag 0x%x", item->tag);			ret = 0;	}	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */	return ret;}/* * Process a reserved item. */static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item){	dbg("reserved item type, tag 0x%x", item->tag);	return 0;}/* * Free a report and all registered fields. The field->usage and * field->value table's are allocated behind the field, so we need * only to free(field) itself. */static void hid_free_report(struct hid_report *report){	unsigned n;	for (n = 0; n < report->maxfield; n++)		kfree(report->field[n]);	if (report->data)		kfree(report->data);	kfree(report);}/* * Free a device structure, all reports, and all fields. */static void hid_free_device(struct hid_device *device){	unsigned i,j;	for (i = 0; i < HID_REPORT_TYPES; i++) {		struct hid_report_enum *report_enum = device->report_enum + i;		for (j = 0; j < 256; j++) {			struct hid_report *report = report_enum->report_id_hash[j];			if (report) hid_free_report(report);		}	}	if (device->rdesc) kfree(device->rdesc);}/* * Fetch a report description item from the data stream. We support long * items, though they are not used yet. */static __u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item){	if ((end - start) > 0) {		__u8 b = *start++;		item->type = (b >> 2) & 3;		item->tag  = (b >> 4) & 15;		if (item->tag == HID_ITEM_TAG_LONG) {			item->format = HID_ITEM_FORMAT_LONG;			if ((end - start) >= 2) {				item->size = *start++;				item->tag  = *start++;				if ((end - start) >= item->size) {					item->data.longdata = start;					start += item->size;					return start;				}			}		} else {			item->format = HID_ITEM_FORMAT_SHORT;			item->size = b & 3;			switch (item->size) {				case 0:					return start;				case 1:					if ((end - start) >= 1) {						item->data.u8 = *start++;						return start;					}					break;				case 2:					if ((end - start) >= 2) {						item->data.u16 = le16_to_cpu( get_unaligned(((__u16*)start)++));						return start;					}				case 3:					item->size++;					if ((end - start) >= 4) {						item->data.u32 = le32_to_cpu( get_unaligned(((__u32*)start)++));						return start;					}			}		}	}	return NULL;}/* * Parse a report description into a hid_device structure. Reports are * enumerated, fields are attached to these reports. */static struct hid_device *hid_parse_report(__u8 *start, unsigned size){	struct hid_device *device;	struct hid_parser *parser;	struct hid_item item;	__u8 *end;	unsigned i;	static int (*dispatch_type[])(struct hid_parser *parser,				      struct hid_item *item) = {		hid_parser_main,		hid_parser_global,		hid_parser_local,		hid_parser_reserved	};	if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))		return NULL;	memset(device, 0, sizeof(struct hid_device));	for (i = 0; i < HID_REPORT_TYPES; i++)		INIT_LIST_HEAD(&device->report_enum[i].report_list);	if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {		kfree(device);		return NULL;	}	memcpy(device->rdesc, start, size);	if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {		kfree(device->rdesc);		kfree(device);		return NULL;	}	memset(parser, 0, sizeof(struct hid_parser));	parser->device = device;	end = start + size;	while ((start = fetch_item(start, end, &item)) != 0) {		if (item.format != HID_ITEM_FORMAT_SHORT) {			dbg("unexpected long global item");			hid_free_device(device);			kfree(parser);			return NULL;		}		if (dispatch_type[item.type](parser, &item)) {			dbg("item %u %u %u %u parsing failed\n",				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);			hid_free_device(device);			kfree(parser);			return NULL;		}		if (start == end) {			if (parser->collection_stack_ptr) {				dbg("unbalanced collection at end of report description");				hid_free_device(device);				kfree(parser);				return NULL;			}			if (parser->local.delimiter_depth) {				dbg("unbalanced delimiter at end of report description");				hid_free_device(device);				kfree(parser);				return NULL;			}			kfree(parser);			return device;		}	}	dbg("item fetching failed at offset %d\n", (int)(end - start));	hid_free_device(device);	kfree(parser);	return NULL;}/* * Convert a signed n-bit integer to signed 32-bit integer. Common * cases are done through the compiler, the screwed things has to be * done by hand. */static __inline__ __s32 snto32(__u32 value, unsigned n){	switch (n) {		case 8:  return ((__s8)value);		case 16: return ((__s16)value);		case 32: return ((__s32)value);	}	return value & (1 << (n - 1)) ? value | (-1 << n) : value;}/* * Convert a signed 32-bit integer to a signed n-bit integer. */static __inline__ __u32 s32ton(__s32 value, unsigned n){	__s32 a = value >> (n - 1);	if (a && a != -1) return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;	return value & ((1 << n) - 1);}/* * Extract/implement a data field from/to a report. */static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n){	report += (offset >> 5) << 2; offset &= 31;	return (le64_to_cpu(get_unaligned((__u64*)report)) >> offset) & ((1 << n) - 1);}static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value){	report += (offset >> 5) << 2; offset &= 31;	put_unaligned((get_unaligned((__u64*)report)		& cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))		| cpu_to_le64((__u64)value << offset), (__u64*)report);}/* * Search an array for a value. */static __inline__ int search(__s32 *array, __s32 value, unsigned n){	while (n--) if (*array++ == value) return 0;	return -1;}static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value){	hid_dump_input(usage, value);	if (hid->claimed & HID_CLAIMED_INPUT)		hidinput_hid_event(hid, field, usage, value);#ifdef CONFIG_USB_HIDDEV	if (hid->claimed & HID_CLAIMED_HIDDEV)		hiddev_hid_event(hid, usage->hid, value);#endif}/* * Analyse a received field, and fetch the data from it. The field * content is stored for next report processing (we do differential * reporting to the layer). */static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data){	unsigned n;	unsigned count = field->report_count;	unsigned offset = field->report_offset;	unsigned size = field->report_size;	__s32 min = field->logical_minimum;	__s32 max = field->logical_maximum;	__s32 value[count]; /* WARNING: gcc specific */	for (n = 0; n < count; n++) {			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :						    extract(data, offset + n * size, size);			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */			    && value[n] >= min && value[n] <= max			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)				return;	}	for (n = 0; n < count; n++) {		if (HID_MAIN_ITEM_VARIABLE & field->flags) {			if (field->flags & HID_MAIN_ITEM_RELATIVE) {				if (!value[n]) continue;			} else {				if (value[n] == field->value[n]) continue;			}				hid_process_event(hid, field, &field->usage[n], value[n]);			continue;		}		if (field->value[n] >= min && field->value[n] <= max			&& field->usage[field->value[n] - min].hid			&& search(value, field->value[n], count))				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0);		if (value[n] >= min && value[n] <= max			&& field->usage[value[n] - min].hid			&& search(field->value, value[n], count))				hid_process_event(hid, field, &field->usage[value[n] - min], 1);	}	memcpy(field->value, value, count * sizeof(__s32));}static int hid_input_report(int type, u8 *data, int len, struct hid_device *hid){	struct hid_report_enum *report_enum = hid->report_enum + type;	struct hid_report *report;	int n, size;	if (!len) {		dbg("empty report");		return -1;	}#ifdef DEBUG_DATA	printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");#endif	n = 0;				/* Normally report number is 0 */	if (report_enum->numbered) {	/* Device uses numbered reports, data[0] is report number */		n = *data++;		len--;	}	if (!(report = report_enum->report_id_hash[n])) {		dbg("undefined report_id %d received", n);#ifdef DEBUG			printk(KERN_DEBUG __FILE__ ": report (size %u) = ", len);			for (n = 0; n < len; n++)				printk(" %02x", data[n]);			printk("\n");#endif		return -1;	}	size = ((report->size - 1) >> 3) + 1;	if (len < size) {		if (size <= 8) {			dbg("report %d is too short, (%d < %d)", report->id, len, size);			return -1;		}		/*		 * Some low-speed devices have large reports and maxpacketsize 8.		 * We buffer the data in that case and parse it when we got it all.		 * Works only for unnumbered reports. Doesn't make sense for numbered		 * reports anyway - then they don't need to be large.		 */		if (!report->data)			if (!(report->data = kmalloc(size, GFP_ATOMIC))) {				dbg("couldn't allocate report buffer");				return -1;			}		if (report->idx + len > size) {			dbg("report data buffer overflow");			report->idx = 0;			return -1;		}		memcpy(report->data + report->idx, data, len);		report->idx += len;		if (report->idx < size)			return 0;		data = report->data;	}	for (n = 0; n < report->maxfield; n++)		hid_input_field(hid, report->field[n], data);	report->idx = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -