⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 leastsquarestransform.cs

📁 Sharp Map 用于制作GIS系统S harp Map 用于制作GIS系统S harp Map 用于制作GIS系统
💻 CS
字号:
// Copyright 2005, 2006 - Morten Nielsen (www.iter.dk)
//
// This file is part of SharpMap.
// SharpMap is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
// 
// SharpMap is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public License
// along with SharpMap; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 

using System;
using System.Collections.Generic;
using System.Text;

namespace SharpMap.Utilities
{
	/// <summary>
	/// Calculates Affine and Helmert transformation using Least-Squares Regression of input and output points
	/// </summary>
	public class LeastSquaresTransform
	{
		private List<SharpMap.Geometries.Point> inputs;
		private List<SharpMap.Geometries.Point> outputs;

		/// <summary>
		/// Initialize Least Squares transformations
		/// </summary>
		public LeastSquaresTransform() 
		{
			inputs = new List<SharpMap.Geometries.Point>();
			outputs = new List<SharpMap.Geometries.Point>();
		}

		/// <summary>
		/// Adds an input and output value pair to the collection
		/// </summary>
		/// <param name="input"></param>
		/// <param name="output"></param>
		public void AddInputOutputPoint(SharpMap.Geometries.Point input, SharpMap.Geometries.Point output)
		{
			inputs.Add(input);
			outputs.Add(output);
		}

		/// <summary>
		/// Removes input and output value pair at the specified index
		/// </summary>
		/// <param name="i"></param>
		public void RemoveInputOutputPointAt(int i)
		{
			inputs.RemoveAt(i);
			outputs.RemoveAt(i);
		}

		/// <summary>
		/// Gets the input point value at the specified index
		/// </summary>
		/// <param name="i">index</param>
		/// <returns>Input point value a index 'i'</returns>
		public SharpMap.Geometries.Point GetInputPoint(int i)
		{
			return inputs[i];
		}

		/// <summary>
		/// Sets the input point value at the specified index
		/// </summary>
		/// <param name="p">Point value</param>
		/// <param name="i">index</param>
		public void SetInputPointAt(SharpMap.Geometries.Point p, int i)
		{
			inputs[i] = p;
		}

		/// <summary>
		/// Gets the output point value at the specified index
		/// </summary>
		/// <param name="i">index</param>
		/// <returns>Output point value a index 'i'</returns>
		public SharpMap.Geometries.Point GetOutputPoint(int i)
		{
			return outputs[i];
		}

		/// <summary>
		/// Sets the output point value at the specified index
		/// </summary>
		/// <param name="p">Point value</param>
		/// <param name="i">index</param>
		public void SetOutputPointAt(SharpMap.Geometries.Point p, int i)
		{
			outputs[i] = p;
		}

		/// <summary>
		/// Return an array with the six affine transformation parameters {a,b,c,d,e,f} and the sum of the squares of the residuals (s0)
		/// </summary>
		/// <remarks>
		/// a,b defines scale vector 1 of coordinate system, d,e scale vector 2. c,f defines offset.
		/// <para>
		/// Converting from input (X,Y) to output coordinate system (X',Y') is done by:
		/// X' = a*X + b*Y + c, Y' = d*X + e*Y + f
		/// </para>
		/// <para>
		/// Transformation based on Mikhail "Introduction to Modern Photogrammetry" p. 399-300.
		/// Extended to arbitrary number of measurements by M. Nielsen
		/// </para>
		/// </remarks>
		/// <returns>Array with the six transformation parameters and sum of squared residuals:  a,b,c,d,e,f,s0</returns>
		public double[] GetAffineTransformation() 
		{
			if(inputs.Count<3)
				throw(new System.Exception("At least 3 measurements required to calculate affine transformation"));

			//double precision isn't always enough when transforming large numbers.
			//Lets subtract some mean values and add them later again:
			//Find approximate center values:
			SharpMap.Geometries.Point meanInput = new SharpMap.Geometries.Point(0, 0);
			SharpMap.Geometries.Point meanOutput = new SharpMap.Geometries.Point(0, 0);
			for (int i = 0; i < inputs.Count; i++) 
			{
				meanInput.X += inputs[i].X;
				meanInput.Y += inputs[i].Y;
				meanOutput.X += outputs[i].X;
				meanOutput.Y += outputs[i].Y;
			}
			meanInput.X = Math.Round(meanInput.X / inputs.Count);
			meanInput.Y = Math.Round(meanInput.Y / inputs.Count);
			meanOutput.X = Math.Round(meanOutput.X / inputs.Count);
			meanOutput.Y = Math.Round(meanOutput.Y / inputs.Count);

			double[][] N = CreateMatrix(3,3);
			//Create normal equation: transpose(B)*B
			//B: matrix of calibrated values. Example of row in B: [x , y , -1]
			for (int i = 0; i < inputs.Count; i++) 
			{
				//Subtract mean values
				inputs[i].X -= meanInput.X;
				inputs[i].Y -= meanInput.Y;
				outputs[i].X -= meanOutput.X;
				outputs[i].Y -= meanOutput.Y;
				//Calculate summed values
				N[0][0] += Math.Pow(inputs[i].X,2);
				N[0][1] +=	inputs[i].X*inputs[i].Y;
				N[0][2] += -inputs[i].X;
				N[1][1] += Math.Pow(inputs[i].Y,2);
				N[1][2] += -inputs[i].Y;
			}
			N[2][2] = inputs.Count;

			double[] t1 = new double[3];
			double[] t2 = new double[3];

			for (int i = 0; i < inputs.Count; i++) 
			{
				t1[0] += inputs[i].X * outputs[i].X;
				t1[1] += inputs[i].Y * outputs[i].X;
				t1[2] += -outputs[i].X;

				t2[0] += inputs[i].X * outputs[i].Y;
				t2[1] += inputs[i].Y * outputs[i].Y;
				t2[2] += -outputs[i].Y;
			}
			double[] trans = new double[7];
			// Solve equation N = transpose(B)*t1
			double frac = 1 / (-N[0][0]*N[1][1]*N[2][2]+N[0][0]*Math.Pow(N[1][2],2)+Math.Pow(N[0][1],2)*N[2][2]-2*N[1][2]*N[0][1]*N[0][2]+N[1][1]*Math.Pow(N[0][2],2));		
			trans[0] = (-N[0][1]*N[1][2]*t1[2]+N[0][1]*  t1[1]*N[2][2]-N[0][2]*N[1][2]*t1[1]+N[0][2]*N[1][1]*t1[2]-t1[0]*N[1][1]*N[2][2]+t1[0]*Math.Pow(N[1][2],2)) * frac;
			trans[1] = (-N[0][1]*N[0][2]*t1[2]+N[0][1]*  t1[0]*N[2][2]+N[0][0]*N[1][2]*t1[2]-N[0][0]*t1[1]*N[2][2]-N[0][2]*N[1][2]*t1[0]+Math.Pow(N[0][2],2)*t1[1]) * frac;
			trans[2] = -(-N[1][2]*N[0][1]*t1[0]+Math.Pow(N[0][1],2)*t1[2]+N[0][0]*N[1][2]*t1[1]-N[0][0]*N[1][1]*t1[2]-N[0][2]*N[0][1]*t1[1]+N[1][1]*N[0][2]*t1[0]) * frac;
			trans[2] += - meanOutput.X + meanInput.X;
			// Solve equation N = transpose(B)*t2
			trans[3] = (-N[0][1]*N[1][2]*t2[2]+N[0][1]*  t2[1]*N[2][2]-N[0][2]*N[1][2]*t2[1]+N[0][2]*N[1][1]*t2[2]-t2[0]*N[1][1]*N[2][2]+t2[0]*Math.Pow(N[1][2],2)) * frac;
			trans[4] = (-N[0][1]*N[0][2]*t2[2]+N[0][1]*  t2[0]*N[2][2]+N[0][0]*N[1][2]*t2[2]-N[0][0]*t2[1]*N[2][2]-N[0][2]*N[1][2]*t2[0]+Math.Pow(N[0][2],2)*t2[1]) * frac;
			trans[5] = -(-N[1][2]*N[0][1]*t2[0]+Math.Pow(N[0][1],2)*t2[2]+N[0][0]*N[1][2]*t2[1]-N[0][0]*N[1][1]*t2[2]-N[0][2]*N[0][1]*t2[1]+N[1][1]*N[0][2]*t2[0]) * frac;
			trans[5] += - meanOutput.Y + meanInput.Y;

			//Restore values
			for (int i = 0; i < inputs.Count; i++) 
			{
				inputs[i].X += meanInput.X;
				inputs[i].Y += meanInput.Y;
				outputs[i].X += meanOutput.X;
				outputs[i].Y += meanOutput.Y;
			}

			//Calculate s0
			double s0=0;
			for (int i = 0; i < inputs.Count; i++) 
			{
				double x = inputs[i].X * trans[0] + inputs[i].Y * trans[1] + trans[2];
				double y = inputs[i].X * trans[3] + inputs[i].Y * trans[4] + trans[5];
				s0 += Math.Pow(x-outputs[i].X,2) + Math.Pow(y-outputs[i].Y,2);
			}
			trans[6] = Math.Sqrt(s0) / (inputs.Count);
			return trans;
		}

		/// <summary>
		/// Calculates the four helmert transformation parameters {a,b,c,d} and the sum of the squares of the residuals (s0)
		/// </summary>
		/// <remarks>
		/// <para>
		/// a,b defines scale vector 1 of coordinate system, d,e scale vector 2.
		/// c,f defines offset.
		/// </para>
		/// <para>
		/// Converting from input (X,Y) to output coordinate system (X',Y') is done by:
		/// X' = a*X + b*Y + c, Y' = -b*X + a*Y + d
		/// </para>
		/// <para>This is a transformation initially based on the affine transformation but slightly simpler.</para>
		/// </remarks>
		/// <returns>Array with the four transformation parameters, and sum of squared residuals: a,b,c,d,s0</returns>
		public double[] GetHelmertTransformation() 
		{
			if (inputs.Count < 2)
				throw(new System.Exception("At least 2 measurements required to calculate helmert transformation"));

			//double precision isn't always enough. Lets subtract some mean values and add them later again:
			//Find approximate center values:
			SharpMap.Geometries.Point meanInput = new SharpMap.Geometries.Point(0, 0);
			SharpMap.Geometries.Point meanOutput = new SharpMap.Geometries.Point(0, 0);
			for (int i = 0; i < inputs.Count; i++) 
			{
				meanInput.X += inputs[i].X;
				meanInput.Y += inputs[i].Y;
				meanOutput.X += outputs[i].X;
				meanOutput.Y += outputs[i].Y;
			}
			meanInput.X = Math.Round(meanInput.X / inputs.Count);
			meanInput.Y = Math.Round(meanInput.Y / inputs.Count);
			meanOutput.X = Math.Round(meanOutput.X / inputs.Count);
			meanOutput.Y = Math.Round(meanOutput.Y / inputs.Count);

			double b00=0;
			double b02=0;
			double b03=0;
			double[] t = new double[4];
			for (int i = 0; i < inputs.Count; i++) 
			{
				//Subtract mean values
				inputs[i].X -= meanInput.X;
				inputs[i].Y -= meanInput.Y;
				outputs[i].X -= meanOutput.X;
				outputs[i].Y -= meanOutput.Y;
				//Calculate summed values
				b00 += Math.Pow(inputs[i].X,2) + Math.Pow(inputs[i].Y,2);
				b02 -=	inputs[i].X;
				b03 -=	inputs[i].Y;
				t[0] += -(inputs[i].X*outputs[i].X) - (inputs[i].Y*outputs[i].Y);
				t[1] += -(inputs[i].Y*outputs[i].X) + (inputs[i].X*outputs[i].Y);
				t[2] += outputs[i].X;
				t[3] += outputs[i].Y;
			}
			double frac = 1 / (-inputs.Count * b00 + Math.Pow(b02, 2) + Math.Pow(b03, 2));
			double[] result = new double[5];
			result[0] = (-inputs.Count * t[0] + b02 * t[2] + b03 * t[3]) * frac;
			result[1] = (-inputs.Count * t[1] + b03 * t[2] - b02 * t[3]) * frac;
			result[2] = (b02*t[0]+b03*t[1]-t[2]*b00) * frac + meanOutput.X;
			result[3] = (b03*t[0]-b02*t[1]-t[3]*b00) * frac + meanOutput.Y;

			//Restore values
			for (int i = 0; i < inputs.Count; i++) 
			{
				inputs[i].X += meanInput.X;
				inputs[i].Y += meanInput.Y;
				outputs[i].X += meanOutput.X;
				outputs[i].Y += meanOutput.Y;
			}

			//Calculate s0
			double s0=0;
			for (int i = 0; i < inputs.Count; i++) 
			{
				double x = inputs[i].X * result[0] + inputs[i].Y * result[1] + result[2];
				double y = -inputs[i].X * result[1] + inputs[i].Y * result[0] + result[3];
				s0 += Math.Pow(x-outputs[i].X,2) + Math.Pow(y-outputs[i].Y,2);
			}
			result[4] = Math.Sqrt(s0) / (inputs.Count);
			return result;
		}

		/// <summary>
		/// Creates an n x m matrix of doubles
		/// </summary>
		/// <param name="n">width of matrix</param>
		/// <param name="m">height of matrix</param>
		/// <returns>n*m matrix</returns>
		private double[][] CreateMatrix(int n, int m) 
		{
			double[][] N = new double[n][];
			for(int i=0;i<n;i++) 
			{
				N[i] = new double[m];
			}
			return N;
		}
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -