📄 leastsquarestransform.cs
字号:
// Copyright 2005, 2006 - Morten Nielsen (www.iter.dk)
//
// This file is part of SharpMap.
// SharpMap is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// SharpMap is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with SharpMap; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
using System;
using System.Collections.Generic;
using System.Text;
namespace SharpMap.Utilities
{
/// <summary>
/// Calculates Affine and Helmert transformation using Least-Squares Regression of input and output points
/// </summary>
public class LeastSquaresTransform
{
private List<SharpMap.Geometries.Point> inputs;
private List<SharpMap.Geometries.Point> outputs;
/// <summary>
/// Initialize Least Squares transformations
/// </summary>
public LeastSquaresTransform()
{
inputs = new List<SharpMap.Geometries.Point>();
outputs = new List<SharpMap.Geometries.Point>();
}
/// <summary>
/// Adds an input and output value pair to the collection
/// </summary>
/// <param name="input"></param>
/// <param name="output"></param>
public void AddInputOutputPoint(SharpMap.Geometries.Point input, SharpMap.Geometries.Point output)
{
inputs.Add(input);
outputs.Add(output);
}
/// <summary>
/// Removes input and output value pair at the specified index
/// </summary>
/// <param name="i"></param>
public void RemoveInputOutputPointAt(int i)
{
inputs.RemoveAt(i);
outputs.RemoveAt(i);
}
/// <summary>
/// Gets the input point value at the specified index
/// </summary>
/// <param name="i">index</param>
/// <returns>Input point value a index 'i'</returns>
public SharpMap.Geometries.Point GetInputPoint(int i)
{
return inputs[i];
}
/// <summary>
/// Sets the input point value at the specified index
/// </summary>
/// <param name="p">Point value</param>
/// <param name="i">index</param>
public void SetInputPointAt(SharpMap.Geometries.Point p, int i)
{
inputs[i] = p;
}
/// <summary>
/// Gets the output point value at the specified index
/// </summary>
/// <param name="i">index</param>
/// <returns>Output point value a index 'i'</returns>
public SharpMap.Geometries.Point GetOutputPoint(int i)
{
return outputs[i];
}
/// <summary>
/// Sets the output point value at the specified index
/// </summary>
/// <param name="p">Point value</param>
/// <param name="i">index</param>
public void SetOutputPointAt(SharpMap.Geometries.Point p, int i)
{
outputs[i] = p;
}
/// <summary>
/// Return an array with the six affine transformation parameters {a,b,c,d,e,f} and the sum of the squares of the residuals (s0)
/// </summary>
/// <remarks>
/// a,b defines scale vector 1 of coordinate system, d,e scale vector 2. c,f defines offset.
/// <para>
/// Converting from input (X,Y) to output coordinate system (X',Y') is done by:
/// X' = a*X + b*Y + c, Y' = d*X + e*Y + f
/// </para>
/// <para>
/// Transformation based on Mikhail "Introduction to Modern Photogrammetry" p. 399-300.
/// Extended to arbitrary number of measurements by M. Nielsen
/// </para>
/// </remarks>
/// <returns>Array with the six transformation parameters and sum of squared residuals: a,b,c,d,e,f,s0</returns>
public double[] GetAffineTransformation()
{
if(inputs.Count<3)
throw(new System.Exception("At least 3 measurements required to calculate affine transformation"));
//double precision isn't always enough when transforming large numbers.
//Lets subtract some mean values and add them later again:
//Find approximate center values:
SharpMap.Geometries.Point meanInput = new SharpMap.Geometries.Point(0, 0);
SharpMap.Geometries.Point meanOutput = new SharpMap.Geometries.Point(0, 0);
for (int i = 0; i < inputs.Count; i++)
{
meanInput.X += inputs[i].X;
meanInput.Y += inputs[i].Y;
meanOutput.X += outputs[i].X;
meanOutput.Y += outputs[i].Y;
}
meanInput.X = Math.Round(meanInput.X / inputs.Count);
meanInput.Y = Math.Round(meanInput.Y / inputs.Count);
meanOutput.X = Math.Round(meanOutput.X / inputs.Count);
meanOutput.Y = Math.Round(meanOutput.Y / inputs.Count);
double[][] N = CreateMatrix(3,3);
//Create normal equation: transpose(B)*B
//B: matrix of calibrated values. Example of row in B: [x , y , -1]
for (int i = 0; i < inputs.Count; i++)
{
//Subtract mean values
inputs[i].X -= meanInput.X;
inputs[i].Y -= meanInput.Y;
outputs[i].X -= meanOutput.X;
outputs[i].Y -= meanOutput.Y;
//Calculate summed values
N[0][0] += Math.Pow(inputs[i].X,2);
N[0][1] += inputs[i].X*inputs[i].Y;
N[0][2] += -inputs[i].X;
N[1][1] += Math.Pow(inputs[i].Y,2);
N[1][2] += -inputs[i].Y;
}
N[2][2] = inputs.Count;
double[] t1 = new double[3];
double[] t2 = new double[3];
for (int i = 0; i < inputs.Count; i++)
{
t1[0] += inputs[i].X * outputs[i].X;
t1[1] += inputs[i].Y * outputs[i].X;
t1[2] += -outputs[i].X;
t2[0] += inputs[i].X * outputs[i].Y;
t2[1] += inputs[i].Y * outputs[i].Y;
t2[2] += -outputs[i].Y;
}
double[] trans = new double[7];
// Solve equation N = transpose(B)*t1
double frac = 1 / (-N[0][0]*N[1][1]*N[2][2]+N[0][0]*Math.Pow(N[1][2],2)+Math.Pow(N[0][1],2)*N[2][2]-2*N[1][2]*N[0][1]*N[0][2]+N[1][1]*Math.Pow(N[0][2],2));
trans[0] = (-N[0][1]*N[1][2]*t1[2]+N[0][1]* t1[1]*N[2][2]-N[0][2]*N[1][2]*t1[1]+N[0][2]*N[1][1]*t1[2]-t1[0]*N[1][1]*N[2][2]+t1[0]*Math.Pow(N[1][2],2)) * frac;
trans[1] = (-N[0][1]*N[0][2]*t1[2]+N[0][1]* t1[0]*N[2][2]+N[0][0]*N[1][2]*t1[2]-N[0][0]*t1[1]*N[2][2]-N[0][2]*N[1][2]*t1[0]+Math.Pow(N[0][2],2)*t1[1]) * frac;
trans[2] = -(-N[1][2]*N[0][1]*t1[0]+Math.Pow(N[0][1],2)*t1[2]+N[0][0]*N[1][2]*t1[1]-N[0][0]*N[1][1]*t1[2]-N[0][2]*N[0][1]*t1[1]+N[1][1]*N[0][2]*t1[0]) * frac;
trans[2] += - meanOutput.X + meanInput.X;
// Solve equation N = transpose(B)*t2
trans[3] = (-N[0][1]*N[1][2]*t2[2]+N[0][1]* t2[1]*N[2][2]-N[0][2]*N[1][2]*t2[1]+N[0][2]*N[1][1]*t2[2]-t2[0]*N[1][1]*N[2][2]+t2[0]*Math.Pow(N[1][2],2)) * frac;
trans[4] = (-N[0][1]*N[0][2]*t2[2]+N[0][1]* t2[0]*N[2][2]+N[0][0]*N[1][2]*t2[2]-N[0][0]*t2[1]*N[2][2]-N[0][2]*N[1][2]*t2[0]+Math.Pow(N[0][2],2)*t2[1]) * frac;
trans[5] = -(-N[1][2]*N[0][1]*t2[0]+Math.Pow(N[0][1],2)*t2[2]+N[0][0]*N[1][2]*t2[1]-N[0][0]*N[1][1]*t2[2]-N[0][2]*N[0][1]*t2[1]+N[1][1]*N[0][2]*t2[0]) * frac;
trans[5] += - meanOutput.Y + meanInput.Y;
//Restore values
for (int i = 0; i < inputs.Count; i++)
{
inputs[i].X += meanInput.X;
inputs[i].Y += meanInput.Y;
outputs[i].X += meanOutput.X;
outputs[i].Y += meanOutput.Y;
}
//Calculate s0
double s0=0;
for (int i = 0; i < inputs.Count; i++)
{
double x = inputs[i].X * trans[0] + inputs[i].Y * trans[1] + trans[2];
double y = inputs[i].X * trans[3] + inputs[i].Y * trans[4] + trans[5];
s0 += Math.Pow(x-outputs[i].X,2) + Math.Pow(y-outputs[i].Y,2);
}
trans[6] = Math.Sqrt(s0) / (inputs.Count);
return trans;
}
/// <summary>
/// Calculates the four helmert transformation parameters {a,b,c,d} and the sum of the squares of the residuals (s0)
/// </summary>
/// <remarks>
/// <para>
/// a,b defines scale vector 1 of coordinate system, d,e scale vector 2.
/// c,f defines offset.
/// </para>
/// <para>
/// Converting from input (X,Y) to output coordinate system (X',Y') is done by:
/// X' = a*X + b*Y + c, Y' = -b*X + a*Y + d
/// </para>
/// <para>This is a transformation initially based on the affine transformation but slightly simpler.</para>
/// </remarks>
/// <returns>Array with the four transformation parameters, and sum of squared residuals: a,b,c,d,s0</returns>
public double[] GetHelmertTransformation()
{
if (inputs.Count < 2)
throw(new System.Exception("At least 2 measurements required to calculate helmert transformation"));
//double precision isn't always enough. Lets subtract some mean values and add them later again:
//Find approximate center values:
SharpMap.Geometries.Point meanInput = new SharpMap.Geometries.Point(0, 0);
SharpMap.Geometries.Point meanOutput = new SharpMap.Geometries.Point(0, 0);
for (int i = 0; i < inputs.Count; i++)
{
meanInput.X += inputs[i].X;
meanInput.Y += inputs[i].Y;
meanOutput.X += outputs[i].X;
meanOutput.Y += outputs[i].Y;
}
meanInput.X = Math.Round(meanInput.X / inputs.Count);
meanInput.Y = Math.Round(meanInput.Y / inputs.Count);
meanOutput.X = Math.Round(meanOutput.X / inputs.Count);
meanOutput.Y = Math.Round(meanOutput.Y / inputs.Count);
double b00=0;
double b02=0;
double b03=0;
double[] t = new double[4];
for (int i = 0; i < inputs.Count; i++)
{
//Subtract mean values
inputs[i].X -= meanInput.X;
inputs[i].Y -= meanInput.Y;
outputs[i].X -= meanOutput.X;
outputs[i].Y -= meanOutput.Y;
//Calculate summed values
b00 += Math.Pow(inputs[i].X,2) + Math.Pow(inputs[i].Y,2);
b02 -= inputs[i].X;
b03 -= inputs[i].Y;
t[0] += -(inputs[i].X*outputs[i].X) - (inputs[i].Y*outputs[i].Y);
t[1] += -(inputs[i].Y*outputs[i].X) + (inputs[i].X*outputs[i].Y);
t[2] += outputs[i].X;
t[3] += outputs[i].Y;
}
double frac = 1 / (-inputs.Count * b00 + Math.Pow(b02, 2) + Math.Pow(b03, 2));
double[] result = new double[5];
result[0] = (-inputs.Count * t[0] + b02 * t[2] + b03 * t[3]) * frac;
result[1] = (-inputs.Count * t[1] + b03 * t[2] - b02 * t[3]) * frac;
result[2] = (b02*t[0]+b03*t[1]-t[2]*b00) * frac + meanOutput.X;
result[3] = (b03*t[0]-b02*t[1]-t[3]*b00) * frac + meanOutput.Y;
//Restore values
for (int i = 0; i < inputs.Count; i++)
{
inputs[i].X += meanInput.X;
inputs[i].Y += meanInput.Y;
outputs[i].X += meanOutput.X;
outputs[i].Y += meanOutput.Y;
}
//Calculate s0
double s0=0;
for (int i = 0; i < inputs.Count; i++)
{
double x = inputs[i].X * result[0] + inputs[i].Y * result[1] + result[2];
double y = -inputs[i].X * result[1] + inputs[i].Y * result[0] + result[3];
s0 += Math.Pow(x-outputs[i].X,2) + Math.Pow(y-outputs[i].Y,2);
}
result[4] = Math.Sqrt(s0) / (inputs.Count);
return result;
}
/// <summary>
/// Creates an n x m matrix of doubles
/// </summary>
/// <param name="n">width of matrix</param>
/// <param name="m">height of matrix</param>
/// <returns>n*m matrix</returns>
private double[][] CreateMatrix(int n, int m)
{
double[][] N = new double[n][];
for(int i=0;i<n;i++)
{
N[i] = new double[m];
}
return N;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -