⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linux环境进程间通信(五): 共享内存(上).txt

📁 本资源中含有有关LINUX进程通信的一些文章
💻 TXT
📖 第 1 页 / 共 2 页
字号:
name: g	age 25;	name: h	age 26;	name: I	age 27;	name: j	age 28;	name: k	age 29;

在map_normalfile1 输出umap ok后,运行map_normalfile2则输出如下结果:

name: b	age 20;	name: c	age 21;	name: d	age 22;	name: e	age 23;	name: f	age 24;
name:	age 0;	name:	age 0;	name:	age 0;	name:	age 0;	name:	age 0;

从程序的运行结果中可以得出的结论

1、 最终被映射文件的内容的长度不会超过文件本身的初始大小,即映射不能改变文件的大小;

2、 可以用于进程通信的有效地址空间大小大体上受限于被映射文件的大小,但不完全受限于文件大小。打开文件被截短为5个people结构大小,而在map_normalfile1中初始化了10个people数据结构,在恰当时候(map_normalfile1输出initialize over 之后,输出umap ok之前)调用map_normalfile2会发现map_normalfile2将输出全部10个people结构的值,后面将给出详细讨论。
注:在linux中,内存的保护是以页为基本单位的,即使被映射文件只有一个字节大小,内核也会为映射分配一个页面大小的内存。当被映射文件小于一个页面大小时,进程可以对从mmap()返回地址开始的一个页面大小进行访问,而不会出错;但是,如果对一个页面以外的地址空间进行访问,则导致错误发生,后面将进一步描述。因此,可用于进程间通信的有效地址空间大小不会超过文件大小及一个页面大小的和。

3、 文件一旦被映射后,调用mmap()的进程对返回地址的访问是对某一内存区域的访问,暂时脱离了磁盘上文件的影响。所有对mmap()返回地址空间的操作只在内存中有意义,只有在调用了munmap()后或者msync()时,才把内存中的相应内容写回磁盘文件,所写内容仍然不能超过文件的大小。

范例2:父子进程通过匿名映射实现共享内存

#include <sys/mman.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
typedef struct{
	char name[4];
	int  age;
}people;
main(int argc, char** argv)
{
	int i;
	people *p_map;
	char temp;
	p_map=(people*)mmap(NULL,sizeof(people)*10,PROT_READ|PROT_WRITE,MAP_SHARED|MAP_ANONYMOUS,-1,0);
	if(fork() == 0)
	{
		sleep(2);
		for(i = 0;i<5;i++)
			printf("child read: the %d people's age is %d\n",i+1,(*(p_map+i)).age);
		(*p_map).age = 100;
		munmap(p_map,sizeof(people)*10); //实际上,进程终止时,会自动解除映射。
		exit();
	}
	temp = 'a';
	for(i = 0;i<5;i++)
	{
		temp += 1;
		memcpy((*(p_map+i)).name, &temp,2);
		(*(p_map+i)).age=20+i;
	}

	sleep(5);
	printf( "parent read: the first people,s age is %d\n",(*p_map).age );
	printf("umap\n");
	munmap( p_map,sizeof(people)*10 );
	printf( "umap ok\n" );
}

考察程序的输出结果,体会父子进程匿名共享内存:

child read: the 1 people's age is 20
child read: the 2 people's age is 21
child read: the 3 people's age is 22
child read: the 4 people's age is 23
child read: the 5 people's age is 24

parent read: the first people,s age is 100
umap
umap ok

四、对mmap()返回地址的访问

前面对范例运行结构的讨论中已经提到,linux采用的是页式管理机制。对于用mmap()映射普通文件来说,进程会在自己的地址空间新增一块空间,空间大小由mmap()的len参数指定,注意,进程并不一定能够对全部新增空间都能进行有效访问。进程能够访问的有效地址大小取决于文件被映射部分的大小。简单的说,能够容纳文件被映射部分大小的最少页面个数决定了进程从mmap()返回的地址开始,能够有效访问的地址空间大小。超过这个空间大小,内核会根据超过的严重程度返回发送不同的信号给进程。可用如下图示说明:


 


注意:文件被映射部分而不是整个文件决定了进程能够访问的空间大小,另外,如果指定文件的偏移部分,一定要注意为页面大小的整数倍。下面是对进程映射地址空间的访问范例:

#include <sys/mman.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
typedef struct{
	char name[4];
	int  age;
}people;

main(int argc, char** argv)
{
	int fd,i;
	int pagesize,offset;
	people *p_map;
	
	pagesize = sysconf(_SC_PAGESIZE);
	printf("pagesize is %d\n",pagesize);
	fd = open(argv[1],O_CREAT|O_RDWR|O_TRUNC,00777);
	lseek(fd,pagesize*2-100,SEEK_SET);
	write(fd,"",1);
	offset = 0;	//此处offset = 0编译成版本1;offset = pagesize编译成版本2
	p_map = (people*)mmap(NULL,pagesize*3,PROT_READ|PROT_WRITE,MAP_SHARED,fd,offset);
	close(fd);
	
	for(i = 1; i<10; i++)
	{
		(*(p_map+pagesize/sizeof(people)*i-2)).age = 100;
		printf("access page %d over\n",i);
		(*(p_map+pagesize/sizeof(people)*i-1)).age = 100;
		printf("access page %d edge over, now begin to access page %d\n",i, i+1);
		(*(p_map+pagesize/sizeof(people)*i)).age = 100;
		printf("access page %d over\n",i+1);
	}
	munmap(p_map,sizeof(people)*10);
}

如程序中所注释的那样,把程序编译成两个版本,两个版本主要体现在文件被映射部分的大小不同。文件的大小介于一个页面与两个页面之间(大小为:pagesize*2-99),版本1的被映射部分是整个文件,版本2的文件被映射部分是文件大小减去一个页面后的剩余部分,不到一个页面大小(大小为:pagesize-99)。程序中试图访问每一个页面边界,两个版本都试图在进程空间中映射pagesize*3的字节数。

版本1的输出结果如下:

pagesize is 4096
access page 1 over
access page 1 edge over, now begin to access page 2
access page 2 over
access page 2 over
access page 2 edge over, now begin to access page 3
Bus error		//被映射文件在进程空间中覆盖了两个页面,此时,进程试图访问第三个页面

版本2的输出结果如下:

pagesize is 4096
access page 1 over
access page 1 edge over, now begin to access page 2
Bus error		//被映射文件在进程空间中覆盖了一个页面,此时,进程试图访问第二个页面

结论:采用系统调用mmap()实现进程间通信是很方便的,在应用层上接口非常简洁。内部实现机制区涉及到了linux存储管理以及文件系统等方面的内容,可以参考一下相关重要数据结构来加深理解。在本专题的后面部分,将介绍系统v共享内存的实现。

参考文献:

[1] Understanding the Linux Kernel, 2nd Edition, By Daniel P. Bovet, Marco Cesati , 对各主题阐述得重点突出,脉络清晰。

[2] UNIX网络编程第二卷:进程间通信,作者:W.Richard Stevens,译者:杨继张,清华大学出版社。对mmap()有详细阐述。

[3] Linux内核源代码情景分析(上),毛德操、胡希明著,浙江大学出版社,给出了mmap()相关的源代码分析。

[4]mmap()手册

关于作者:

郑彦兴,国防科大攻读博士学位。联系方式: mlinux@163.com

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -