📄 cryptlib.cpp
字号:
while (AnyRetrievable())
{
transferedBytes = ULONG_MAX;
blockedBytes = TransferTo2(target, transferedBytes, channel, blocking);
if (blockedBytes > 0)
return blockedBytes;
}
if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
return 1;
bool result = GetNextMessage();
assert(result);
}
return 0;
}
}
unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
if (AttachedTransformation())
return AttachedTransformation()->CopyMessagesTo(target, count, channel);
else
return 0;
}
void BufferedTransformation::SkipAll()
{
if (AttachedTransformation())
AttachedTransformation()->SkipAll();
else
{
while (SkipMessages()) {}
while (Skip()) {}
}
}
unsigned int BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
{
if (AttachedTransformation())
return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
else
{
assert(!NumberOfMessageSeries());
unsigned int messageCount;
do
{
messageCount = UINT_MAX;
unsigned int blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
if (blockedBytes)
return blockedBytes;
}
while (messageCount != 0);
unsigned long byteCount;
do
{
byteCount = ULONG_MAX;
unsigned int blockedBytes = TransferTo2(target, byteCount, channel, blocking);
if (blockedBytes)
return blockedBytes;
}
while (byteCount != 0);
return 0;
}
}
void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
{
if (AttachedTransformation())
AttachedTransformation()->CopyAllTo(target, channel);
else
{
assert(!NumberOfMessageSeries());
while (CopyMessagesTo(target, UINT_MAX, channel)) {}
}
}
void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
{
if (AttachedTransformation())
AttachedTransformation()->SetRetrievalChannel(channel);
}
unsigned int BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
{
FixedSizeSecBlock<byte, 2> buf;
PutWord(false, order, buf, value);
return ChannelPut(channel, buf, 2, blocking);
}
unsigned int BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
{
FixedSizeSecBlock<byte, 4> buf;
PutWord(false, order, buf, value);
return ChannelPut(channel, buf, 4, blocking);
}
unsigned int BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
{
return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
}
unsigned int BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
{
return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
}
unsigned int BufferedTransformation::PeekWord16(word16 &value, ByteOrder order)
{
byte buf[2] = {0, 0};
unsigned int len = Peek(buf, 2);
if (order)
value = (buf[0] << 8) | buf[1];
else
value = (buf[1] << 8) | buf[0];
return len;
}
unsigned int BufferedTransformation::PeekWord32(word32 &value, ByteOrder order)
{
byte buf[4] = {0, 0, 0, 0};
unsigned int len = Peek(buf, 4);
if (order)
value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
else
value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
return len;
}
unsigned int BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
{
return Skip(PeekWord16(value, order));
}
unsigned int BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
{
return Skip(PeekWord32(value, order));
}
void BufferedTransformation::Attach(BufferedTransformation *newOut)
{
if (AttachedTransformation() && AttachedTransformation()->Attachable())
AttachedTransformation()->Attach(newOut);
else
Detach(newOut);
}
void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
{
GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
}
BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
{
struct EncryptionFilter : public Unflushable<FilterWithInputQueue>
{
// VC60 complains if this function is missing
EncryptionFilter(const EncryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_encryptor(x.m_encryptor) {}
EncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment)
: Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_encryptor(encryptor)
{
}
bool IsolatedMessageEnd(bool blocking)
{
switch (m_continueAt)
{
case 0:
{
unsigned int plaintextLength = m_inQueue.CurrentSize();
m_ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
SecByteBlock plaintext(plaintextLength);
m_inQueue.Get(plaintext, plaintextLength);
m_ciphertext.resize(m_ciphertextLength);
m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext);
}
case 1:
if (!Output(1, m_ciphertext, m_ciphertextLength, 0, blocking))
return false;
};
return true;
}
RandomNumberGenerator &m_rng;
const PK_Encryptor &m_encryptor;
unsigned int m_ciphertextLength;
SecByteBlock m_ciphertext;
};
return new EncryptionFilter(rng, *this, attachment);
}
BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
{
struct DecryptionFilter : public Unflushable<FilterWithInputQueue>
{
// VC60 complains if this function is missing
DecryptionFilter(const DecryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_decryptor(x.m_decryptor) {}
DecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment)
: Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_decryptor(decryptor)
{
}
bool IsolatedMessageEnd(bool blocking)
{
switch (m_continueAt)
{
case 0:
{
unsigned int ciphertextLength = m_inQueue.CurrentSize();
unsigned int maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
SecByteBlock ciphertext(ciphertextLength);
m_inQueue.Get(ciphertext, ciphertextLength);
m_plaintext.resize(maxPlaintextLength);
m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext);
if (!m_result.isValidCoding)
throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
}
case 1:
if (!Output(1, m_plaintext, m_result.messageLength, 0, blocking))
return false;
}
return true;
}
RandomNumberGenerator &m_rng;
const PK_Decryptor &m_decryptor;
SecByteBlock m_plaintext;
DecodingResult m_result;
};
return new DecryptionFilter(rng, *this, attachment);
}
unsigned int PK_FixedLengthCryptoSystem::MaxPlaintextLength(unsigned int cipherTextLength) const
{
if (cipherTextLength == FixedCiphertextLength())
return FixedMaxPlaintextLength();
else
return 0;
}
unsigned int PK_FixedLengthCryptoSystem::CiphertextLength(unsigned int plainTextLength) const
{
if (plainTextLength <= FixedMaxPlaintextLength())
return FixedCiphertextLength();
else
return 0;
}
DecodingResult PK_FixedLengthDecryptor::Decrypt(RandomNumberGenerator &rng, const byte *cipherText, unsigned int cipherTextLength, byte *plainText) const
{
if (cipherTextLength != FixedCiphertextLength())
return DecodingResult();
return FixedLengthDecrypt(rng, cipherText, plainText);
}
unsigned int PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return SignAndRestart(rng, *m, signature, false);
}
unsigned int PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, unsigned int messageLen, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
m->Update(message, messageLen);
return SignAndRestart(rng, *m, signature, false);
}
unsigned int PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, unsigned int recoverableMessageLength,
const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
return SignAndRestart(rng, *m, signature, false);
}
bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return VerifyAndRestart(*m);
}
bool PK_Verifier::VerifyMessage(const byte *message, unsigned int messageLen, const byte *signature, unsigned int signatureLength) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
InputSignature(*m, signature, signatureLength);
m->Update(message, messageLen);
return VerifyAndRestart(*m);
}
DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return RecoverAndRestart(recoveredMessage, *m);
}
DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage,
const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength,
const byte *signature, unsigned int signatureLength) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
InputSignature(*m, signature, signatureLength);
m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
return RecoverAndRestart(recoveredMessage, *m);
}
void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GeneratePrivateKey(rng, privateKey);
GeneratePublicKey(rng, privateKey, publicKey);
}
void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GenerateStaticPrivateKey(rng, privateKey);
GenerateStaticPublicKey(rng, privateKey, publicKey);
}
void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GenerateEphemeralPrivateKey(rng, privateKey);
GenerateEphemeralPublicKey(rng, privateKey, publicKey);
}
NAMESPACE_END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -