⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cryptlib.cpp

📁 加密函数库:包括多种加密解密算法,数字签名,散列算法
💻 CPP
📖 第 1 页 / 共 2 页
字号:

			while (AnyRetrievable())
			{
				transferedBytes = ULONG_MAX;
				blockedBytes = TransferTo2(target, transferedBytes, channel, blocking);
				if (blockedBytes > 0)
					return blockedBytes;
			}

			if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
				return 1;

			bool result = GetNextMessage();
			assert(result);
		}
		return 0;
	}
}

unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->CopyMessagesTo(target, count, channel);
	else
		return 0;
}

void BufferedTransformation::SkipAll()
{
	if (AttachedTransformation())
		AttachedTransformation()->SkipAll();
	else
	{
		while (SkipMessages()) {}
		while (Skip()) {}
	}
}

unsigned int BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
{
	if (AttachedTransformation())
		return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
	else
	{
		assert(!NumberOfMessageSeries());

		unsigned int messageCount;
		do
		{
			messageCount = UINT_MAX;
			unsigned int blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (messageCount != 0);

		unsigned long byteCount;
		do
		{
			byteCount = ULONG_MAX;
			unsigned int blockedBytes = TransferTo2(target, byteCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (byteCount != 0);

		return 0;
	}
}

void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
{
	if (AttachedTransformation())
		AttachedTransformation()->CopyAllTo(target, channel);
	else
	{
		assert(!NumberOfMessageSeries());
		while (CopyMessagesTo(target, UINT_MAX, channel)) {}
	}
}

void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
{
	if (AttachedTransformation())
		AttachedTransformation()->SetRetrievalChannel(channel);
}

unsigned int BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
{
	FixedSizeSecBlock<byte, 2> buf;
	PutWord(false, order, buf, value);
	return ChannelPut(channel, buf, 2, blocking);
}

unsigned int BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
{
	FixedSizeSecBlock<byte, 4> buf;
	PutWord(false, order, buf, value);
	return ChannelPut(channel, buf, 4, blocking);
}

unsigned int BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
}

unsigned int BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
}

unsigned int BufferedTransformation::PeekWord16(word16 &value, ByteOrder order)
{
	byte buf[2] = {0, 0};
	unsigned int len = Peek(buf, 2);

	if (order)
		value = (buf[0] << 8) | buf[1];
	else
		value = (buf[1] << 8) | buf[0];

	return len;
}

unsigned int BufferedTransformation::PeekWord32(word32 &value, ByteOrder order)
{
	byte buf[4] = {0, 0, 0, 0};
	unsigned int len = Peek(buf, 4);

	if (order)
		value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
	else
		value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];

	return len;
}

unsigned int BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
{
	return Skip(PeekWord16(value, order));
}

unsigned int BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
{
	return Skip(PeekWord32(value, order));
}

void BufferedTransformation::Attach(BufferedTransformation *newOut)
{
	if (AttachedTransformation() && AttachedTransformation()->Attachable())
		AttachedTransformation()->Attach(newOut);
	else
		Detach(newOut);
}

void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
{
	GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
}

BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
{
	struct EncryptionFilter : public Unflushable<FilterWithInputQueue>
	{
		// VC60 complains if this function is missing
		EncryptionFilter(const EncryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_encryptor(x.m_encryptor) {}

		EncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment)
			: Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_encryptor(encryptor)
		{
		}

		bool IsolatedMessageEnd(bool blocking)
		{
			switch (m_continueAt)
			{
			case 0:
				{
				unsigned int plaintextLength = m_inQueue.CurrentSize();
				m_ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);

				SecByteBlock plaintext(plaintextLength);
				m_inQueue.Get(plaintext, plaintextLength);
				m_ciphertext.resize(m_ciphertextLength);
				m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext);
				}

			case 1:
				if (!Output(1, m_ciphertext, m_ciphertextLength, 0, blocking))
					return false;
			};
			return true;
		}

		RandomNumberGenerator &m_rng;
		const PK_Encryptor &m_encryptor;
		unsigned int m_ciphertextLength;
		SecByteBlock m_ciphertext;
	};

	return new EncryptionFilter(rng, *this, attachment);
}

BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
{
	struct DecryptionFilter : public Unflushable<FilterWithInputQueue>
	{
		// VC60 complains if this function is missing
		DecryptionFilter(const DecryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_decryptor(x.m_decryptor) {}

		DecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment)
			: Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_decryptor(decryptor)
		{
		}

		bool IsolatedMessageEnd(bool blocking)
		{
			switch (m_continueAt)
			{
			case 0:
				{
				unsigned int ciphertextLength = m_inQueue.CurrentSize();
				unsigned int maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);

				SecByteBlock ciphertext(ciphertextLength);
				m_inQueue.Get(ciphertext, ciphertextLength);
				m_plaintext.resize(maxPlaintextLength);
				m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext);
				if (!m_result.isValidCoding)
					throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
				}

			case 1:
				if (!Output(1, m_plaintext, m_result.messageLength, 0, blocking))
					return false;
			}
			return true;
		}

		RandomNumberGenerator &m_rng;
		const PK_Decryptor &m_decryptor;
		SecByteBlock m_plaintext;
		DecodingResult m_result;
	};

	return new DecryptionFilter(rng, *this, attachment);
}

unsigned int PK_FixedLengthCryptoSystem::MaxPlaintextLength(unsigned int cipherTextLength) const
{
	if (cipherTextLength == FixedCiphertextLength())
		return FixedMaxPlaintextLength();
	else
		return 0;
}

unsigned int PK_FixedLengthCryptoSystem::CiphertextLength(unsigned int plainTextLength) const
{
	if (plainTextLength <= FixedMaxPlaintextLength())
		return FixedCiphertextLength();
	else
		return 0;
}

DecodingResult PK_FixedLengthDecryptor::Decrypt(RandomNumberGenerator &rng, const byte *cipherText, unsigned int cipherTextLength, byte *plainText) const
{
	if (cipherTextLength != FixedCiphertextLength())
		return DecodingResult();

	return FixedLengthDecrypt(rng, cipherText, plainText);
}

unsigned int PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return SignAndRestart(rng, *m, signature, false);
}

unsigned int PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, unsigned int messageLen, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	m->Update(message, messageLen);
	return SignAndRestart(rng, *m, signature, false);
}

unsigned int PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, unsigned int recoverableMessageLength, 
	const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return SignAndRestart(rng, *m, signature, false);
}

bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return VerifyAndRestart(*m);
}

bool PK_Verifier::VerifyMessage(const byte *message, unsigned int messageLen, const byte *signature, unsigned int signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(message, messageLen);
	return VerifyAndRestart(*m);
}

DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return RecoverAndRestart(recoveredMessage, *m);
}

DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, 
	const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength, 
	const byte *signature, unsigned int signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return RecoverAndRestart(recoveredMessage, *m);
}

void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GeneratePrivateKey(rng, privateKey);
	GeneratePublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateStaticPrivateKey(rng, privateKey);
	GenerateStaticPublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateEphemeralPrivateKey(rng, privateKey);
	GenerateEphemeralPublicKey(rng, privateKey, publicKey);
}

NAMESPACE_END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -