📄 integer.cpp
字号:
word BT[2];
BT[0] = TB[NB-2] + 1;
BT[1] = TB[NB-1] + (BT[0]==0);
// start reducing TA mod TB, 2 words at a time
for (unsigned i=NA-2; i>=NB; i-=2)
{
AtomicDivide(Q+i-NB, TA+i-2, BT);
CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
}
// copy TA into R, and denormalize it
CopyWords(R, TA+shiftWords, NB);
ShiftWordsRightByBits(R, NB, shiftBits);
}
static inline unsigned int EvenWordCount(const word *X, unsigned int N)
{
while (N && X[N-2]==0 && X[N-1]==0)
N-=2;
return N;
}
// return k
// R[N] --- result = A^(-1) * 2^k mod M
// T[4*N] - temporary work space
// A[NA] -- number to take inverse of
// M[N] --- modulus
unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N)
{
assert(NA<=N && N && N%2==0);
word *b = T;
word *c = T+N;
word *f = T+2*N;
word *g = T+3*N;
unsigned int bcLen=2, fgLen=EvenWordCount(M, N);
unsigned int k=0, s=0;
SetWords(T, 0, 3*N);
b[0]=1;
CopyWords(f, A, NA);
CopyWords(g, M, N);
while (1)
{
word t=f[0];
while (!t)
{
if (EvenWordCount(f, fgLen)==0)
{
SetWords(R, 0, N);
return 0;
}
ShiftWordsRightByWords(f, fgLen, 1);
if (c[bcLen-1]) bcLen+=2;
assert(bcLen <= N);
ShiftWordsLeftByWords(c, bcLen, 1);
k+=WORD_BITS;
t=f[0];
}
unsigned int i=0;
while (t%2 == 0)
{
t>>=1;
i++;
}
k+=i;
if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
{
if (s%2==0)
CopyWords(R, b, N);
else
Subtract(R, M, b, N);
return k;
}
ShiftWordsRightByBits(f, fgLen, i);
t=ShiftWordsLeftByBits(c, bcLen, i);
if (t)
{
c[bcLen] = t;
bcLen+=2;
assert(bcLen <= N);
}
if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
fgLen-=2;
if (Compare(f, g, fgLen)==-1)
{
std::swap(f, g);
std::swap(b, c);
s++;
}
Subtract(f, f, g, fgLen);
if (Add(b, b, c, bcLen))
{
b[bcLen] = 1;
bcLen+=2;
assert(bcLen <= N);
}
}
}
// R[N] - result = A/(2^k) mod M
// A[N] - input
// M[N] - modulus
void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
{
CopyWords(R, A, N);
while (k--)
{
if (R[0]%2==0)
ShiftWordsRightByBits(R, N, 1);
else
{
word carry = Add(R, R, M, N);
ShiftWordsRightByBits(R, N, 1);
R[N-1] += carry<<(WORD_BITS-1);
}
}
}
// R[N] - result = A*(2^k) mod M
// A[N] - input
// M[N] - modulus
void MultiplyByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
{
CopyWords(R, A, N);
while (k--)
if (ShiftWordsLeftByBits(R, N, 1) || Compare(R, M, N)>=0)
Subtract(R, R, M, N);
}
// ******************************************************************
static const unsigned int RoundupSizeTable[] = {2, 2, 2, 4, 4, 8, 8, 8, 8};
static inline unsigned int RoundupSize(unsigned int n)
{
if (n<=8)
return RoundupSizeTable[n];
else if (n<=16)
return 16;
else if (n<=32)
return 32;
else if (n<=64)
return 64;
else return 1U << BitPrecision(n-1);
}
Integer::Integer()
: reg(2), sign(POSITIVE)
{
reg[0] = reg[1] = 0;
}
Integer::Integer(const Integer& t)
: reg(RoundupSize(t.WordCount())), sign(t.sign)
{
CopyWords(reg, t.reg, reg.size());
}
Integer::Integer(signed long value)
: reg(2)
{
if (value >= 0)
sign = POSITIVE;
else
{
sign = NEGATIVE;
value = -value;
}
reg[0] = word(value);
reg[1] = word(SafeRightShift<WORD_BITS, unsigned long>(value));
}
Integer::Integer(Sign s, word high, word low)
: reg(2), sign(s)
{
reg[0] = low;
reg[1] = high;
}
bool Integer::IsConvertableToLong() const
{
if (ByteCount() > sizeof(long))
return false;
unsigned long value = reg[0];
value += SafeLeftShift<WORD_BITS, unsigned long>(reg[1]);
if (sign==POSITIVE)
return (signed long)value >= 0;
else
return -(signed long)value < 0;
}
signed long Integer::ConvertToLong() const
{
assert(IsConvertableToLong());
unsigned long value = reg[0];
value += SafeLeftShift<WORD_BITS, unsigned long>(reg[1]);
return sign==POSITIVE ? value : -(signed long)value;
}
Integer::Integer(BufferedTransformation &encodedInteger, unsigned int byteCount, Signedness s)
{
Decode(encodedInteger, byteCount, s);
}
Integer::Integer(const byte *encodedInteger, unsigned int byteCount, Signedness s)
{
Decode(encodedInteger, byteCount, s);
}
Integer::Integer(BufferedTransformation &bt)
{
BERDecode(bt);
}
Integer::Integer(RandomNumberGenerator &rng, unsigned int bitcount)
{
Randomize(rng, bitcount);
}
Integer::Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
{
if (!Randomize(rng, min, max, rnType, equiv, mod))
throw Integer::RandomNumberNotFound();
}
Integer Integer::Power2(unsigned int e)
{
Integer r((word)0, BitsToWords(e+1));
r.SetBit(e);
return r;
}
const Integer &Integer::Zero()
{
static const Integer zero;
return zero;
}
const Integer &Integer::One()
{
static const Integer one(1,2);
return one;
}
const Integer &Integer::Two()
{
static const Integer two(2,2);
return two;
}
bool Integer::operator!() const
{
return IsNegative() ? false : (reg[0]==0 && WordCount()==0);
}
Integer& Integer::operator=(const Integer& t)
{
if (this != &t)
{
reg.New(RoundupSize(t.WordCount()));
CopyWords(reg, t.reg, reg.size());
sign = t.sign;
}
return *this;
}
bool Integer::GetBit(unsigned int n) const
{
if (n/WORD_BITS >= reg.size())
return 0;
else
return bool((reg[n/WORD_BITS] >> (n % WORD_BITS)) & 1);
}
void Integer::SetBit(unsigned int n, bool value)
{
if (value)
{
reg.CleanGrow(RoundupSize(BitsToWords(n+1)));
reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS));
}
else
{
if (n/WORD_BITS < reg.size())
reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS));
}
}
byte Integer::GetByte(unsigned int n) const
{
if (n/WORD_SIZE >= reg.size())
return 0;
else
return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));
}
void Integer::SetByte(unsigned int n, byte value)
{
reg.CleanGrow(RoundupSize(BytesToWords(n+1)));
reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE));
reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));
}
unsigned long Integer::GetBits(unsigned int i, unsigned int n) const
{
assert(n <= sizeof(unsigned long)*8);
unsigned long v = 0;
for (unsigned int j=0; j<n; j++)
v |= GetBit(i+j) << j;
return v;
}
Integer Integer::operator-() const
{
Integer result(*this);
result.Negate();
return result;
}
Integer Integer::AbsoluteValue() const
{
Integer result(*this);
result.sign = POSITIVE;
return result;
}
void Integer::swap(Integer &a)
{
reg.swap(a.reg);
std::swap(sign, a.sign);
}
Integer::Integer(word value, unsigned int length)
: reg(RoundupSize(length)), sign(POSITIVE)
{
reg[0] = value;
SetWords(reg+1, 0, reg.size()-1);
}
template <class T>
static Integer StringToInteger(const T *str)
{
word radix;
#if (defined(__GNUC__) && __GNUC__ <= 3) // GCC workaround
// std::char_traits doesn't exist in GCC 2.x
// std::char_traits<wchar_t>::length() not defined in GCC 3.2
unsigned int length;
for (length = 0; str[length] != 0; length++) {}
#else
unsigned int length = std::char_traits<T>::length(str);
#endif
Integer v;
if (length == 0)
return v;
switch (str[length-1])
{
case 'h':
case 'H':
radix=16;
break;
case 'o':
case 'O':
radix=8;
break;
case 'b':
case 'B':
radix=2;
break;
default:
radix=10;
}
if (length > 2 && str[0] == '0' && str[1] == 'x')
radix = 16;
for (unsigned i=0; i<length; i++)
{
word digit;
if (str[i] >= '0' && str[i] <= '9')
digit = str[i] - '0';
else if (str[i] >= 'A' && str[i] <= 'F')
digit = str[i] - 'A' + 10;
else if (str[i] >= 'a' && str[i] <= 'f')
digit = str[i] - 'a' + 10;
else
digit = radix;
if (digit < radix)
{
v *= radix;
v += digit;
}
}
if (str[0] == '-')
v.Negate();
return v;
}
Integer::Integer(const char *str)
: reg(2), sign(POSITIVE)
{
*this = StringToInteger(str);
}
Integer::Integer(const wchar_t *str)
: reg(2), sign(POSITIVE)
{
*this = StringToInteger(str);
}
unsigned int Integer::WordCount() const
{
return CountWords(reg, reg.size());
}
unsigned int Integer::ByteCount() const
{
unsigned wordCount = WordCount();
if (wordCount)
return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]);
else
return 0;
}
unsigned int Integer::BitCount() const
{
unsigned wordCount = WordCount();
if (wordCount)
return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]);
else
return 0;
}
void Integer::Decode(const byte *input, unsigned int inputLen, Signedness s)
{
StringStore store(input, inputLen);
Decode(store, inputLen, s);
}
void Integer::Decode(BufferedTransformation &bt, unsigned int inputLen, Signedness s)
{
assert(bt.MaxRetrievable() >= inputLen);
byte b;
bt.Peek(b);
sign = ((s==SIGNED) && (b & 0x80)) ? NEGATIVE : POSITIVE;
while (inputLen>0 && (sign==POSITIVE ? b==0 : b==0xff))
{
bt.Skip(1);
inputLen--;
bt.Peek(b);
}
reg.CleanNew(RoundupSize(BytesToWords(inputLen)));
for (unsigned int i=inputLen; i > 0; i--)
{
bt.Get(b);
reg[(i-1)/WORD_SIZE] |= b << ((i-1)%WORD_SIZE)*8;
}
if (sign == NEGATIVE)
{
for (unsigned i=inputLen; i<reg.size()*WORD_SIZE; i++)
reg[i/WORD_SIZE] |= 0xff << (i%WORD_SIZE)*8;
TwosComplement(reg, reg.size());
}
}
unsigned int Integer::MinEncodedSize(Signedness signedness) const
{
unsigned int outputLen = STDMAX(1U, ByteCount());
if (signedness == UNSIGNED)
return outputLen;
if (NotNegative() && (GetByte(outputLen-1) & 0x80))
outputLen++;
if (IsNegative() && *this < -Power2(outputLen*8-1))
outputLen++;
return outputLen;
}
unsigned int Integer::Encode(byte *output, unsigned int outputLen, Signedness signedness) const
{
ArraySink sink(output, outputLen);
return Encode(sink, outputLen, signedness);
}
unsigned int Integer::Encode(BufferedTransformation &bt, unsigned int outputLen, Signedness signedness) const
{
if (signedness == UNSIGNED || NotNegative())
{
for (unsigned int i=outputLen; i > 0; i--)
bt.Put(GetByte(i-1));
}
else
{
// take two's complement of *this
Integer temp = Integer::Power2(8*STDMAX(ByteCount(), outputLen)) + *this;
for (unsigned i=0; i<outputLen; i++)
bt.Put(temp.GetByte(outputLen-i-1));
}
return outputLen;
}
void Integer::DEREncode(BufferedTransformation &bt) const
{
DERGeneralEncoder enc(bt, INTEGER);
Encode(enc, MinEncodedSize(SIGNED), SIGNED);
enc.MessageEnd();
}
void Integer::BERDecode(const byte *input, unsigned int len)
{
StringStore store(input, len);
BERDecode(store);
}
void Integer::BERDecode(BufferedTransformation &bt)
{
BERGeneralDecoder dec(bt, INTEGER);
if (!dec.IsDefiniteLength() || dec.MaxRetrievable() < dec.RemainingLength())
BERDecodeError();
Decode(dec, dec.RemainingLength(), SIGNED);
dec.MessageEnd();
}
void Integer::DEREncodeAsOctetString(BufferedTransformation &bt, unsigned int length) const
{
DERGeneralEncoder enc(bt, OCTET_STRING);
Encode(enc, length);
enc.MessageEnd();
}
void Integer::BERDecodeAsOctetString(BufferedTransformation &bt, unsigned int length)
{
BERGeneralDecoder dec(bt, OCTET_STRING);
if (!dec.IsDefiniteLength() || dec.RemainingLength() != length)
BERDecodeError();
Decode(dec, length);
dec.MessageEnd();
}
unsigned int Integer::OpenPGPEncode(byte *output, unsigned int len) const
{
ArraySink sink(output, len);
return OpenPGPEncode(sink);
}
unsigned int Integer::OpenPGPEncode(BufferedTransformation &bt) const
{
word16 bitCount = BitCount();
bt.PutWord16(bitCount);
return 2 + Encode(bt, BitsToBytes(bitCount));
}
void Integer::OpenPGPDecode(const byte *input, unsigned int len)
{
StringStore store(input, len);
OpenPGPDecode(store);
}
void Integer::OpenPGPDecode(BufferedTransformation &bt)
{
word16 bitCount;
if (bt.GetWo
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -