📄 newadapt.m
字号:
function AdaptModel = newadapt(adapt_fun_weight , adapt_fun_weight_param , ...
adapt_fun_delay , adapt_fun_delay_param , ...
adapt_fun_threshold , adapt_fun_threshold_param, ...
adapt_fun_model , adapt_fun_model_param)
% NEWADAPT Create a new adaptation model for Biological Neural Network (BNN)
%
% Version: 1.0
% ----------------------------------
% Amir Reza Saffari Azar, August 2004
% amir@ymer.org
% http://www.ymer.org
% http://ee.sut.ac.ir/faculty/saffari/main.index
%---checking input arguments and creating with defaults
switch nargin
case 8 % all arguments
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , adapt_fun_delay_param);
threshold_prop = struct('AdaptFun' , adapt_fun_threshold , 'AdaptFunParam' , adapt_fun_threshold_param);
model_prop = struct('AdaptFun' , adapt_fun_model , 'AdaptFunParam' , adapt_fun_model_param);
case 7
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , adapt_fun_delay_param);
threshold_prop = struct('AdaptFun' , adapt_fun_threshold , 'AdaptFunParam' , adapt_fun_threshold_param);
model_prop = struct('AdaptFun' , adapt_fun_model , 'AdaptFunParam' , 'def');
case 6
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , adapt_fun_delay_param);
threshold_prop = struct('AdaptFun' , adapt_fun_threshold , 'AdaptFunParam' , adapt_fun_threshold_param);
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 5
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , adapt_fun_delay_param);
threshold_prop = struct('AdaptFun' , adapt_fun_threshold , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 4
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , adapt_fun_delay_param);
threshold_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 3
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , adapt_fun_delay , 'AdaptFunParam' , 'def');
threshold_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 2
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , adapt_fun_weight_param);
delay_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
threshold_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 1
weight_prop = struct('AdaptFun' , adapt_fun_weight , 'AdaptFunParam' , 'def');
delay_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
threshold_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
case 0
weight_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
delay_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
threshold_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
model_prop = struct('AdaptFun' , 'none' , 'AdaptFunParam' , 'def');
end
AdaptModel = struct('Weight' , weight_prop , 'Delay' , delay_prop , 'Threshold' , threshold_prop , 'Model' , model_prop);
%---checking model
[CheckMessage CheckFlag] = checkadapt(AdaptModel);
dispmessage(CheckMessage , 'text' , 'Adaptation Build Status');
AdaptModel.BuildStatus.Message = CheckMessage;
AdaptModel.BuildStatus.Flag = CheckFlag;
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -