📄 mode_decision.c
字号:
/*!
***************************************************************************
* \file mode_decision.c
*
* \brief
* Main macroblock mode decision functions and helpers
*
**************************************************************************
*/
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <limits.h>
#include <float.h>
#include <memory.h>
#include "global.h"
#include "rdopt_coding_state.h"
#include "mb_access.h"
#include "intrarefresh.h"
#include "image.h"
#include "transform8x8.h"
#include "fast_me.h"
#include "simplified_fast_me.h"
#include "ratectl.h"
#include "mode_decision.h"
#include "fmo.h"
//==== MODULE PARAMETERS ====
imgpel temp_imgY[16][16]; // to temp store the Y data for 8x8 transform
imgpel temp_imgU[16][16];
imgpel temp_imgV[16][16];
const int b8_mode_table[6] = {0, 4, 5, 6, 7}; // DO NOT CHANGE ORDER !!!
const int mb_mode_table[9] = {0, 1, 2, 3, P8x8, I16MB, I4MB, I8MB, IPCM}; // DO NOT CHANGE ORDER !!!
// Residue Color Transform
const int mb_mode_table_RCT[11] = {0, 1, 2, 3, P8x8, I16MB, I16MB, I16MB, I16MB, I4MB, I8MB};
/*!
*************************************************************************************
* \brief
* Update Rate Control Difference
*************************************************************************************
*/
void rc_store_diff(int cpix_x, int cpix_y, imgpel prediction[16][16])
{
int i,j;
int pix_x, pix_y;
for (i=0; i<MB_BLOCK_SIZE; i++)
{
pix_x = cpix_x + i;
for(j=0; j<MB_BLOCK_SIZE; j++)
{
pix_y = cpix_y + j;
diffy[j][i] = imgY_org[pix_y][pix_x] - prediction[j][i];
}
}
}
/*!
*************************************************************************************
* \brief
* Update Rate Control Parameters
*************************************************************************************
*/
void update_rc(Macroblock *currMB, short best_mode)
{
if(img->type==P_SLICE)
{
img->MADofMB[img->current_mb_nr] = calc_MAD();
if(input->basicunit<img->Frame_Total_Number_MB)
{
img->TotalMADBasicUnit +=img->MADofMB[img->current_mb_nr];
// delta_qp is present only for non-skipped macroblocks
if ((currMB->cbp!=0 || best_mode==I16MB))
currMB->prev_cbp = 1;
else
{
currMB->delta_qp = 0;
currMB->qp = currMB->prev_qp;
img->qp = currMB->qp;
currMB->prev_cbp = 0;
}
// When MBAFF is used, delta_qp is only present for
// the first non-skipped macroblock of each macroblock pair
if (input->MbInterlace)
{
if(!currMB->mb_field)
{
DELTA_QP = currMB->delta_qp;
QP = currMB->qp;
}
else
{
DELTA_QP2 = currMB->delta_qp;
QP2 = currMB->qp;
}
}
}
}
}
/*!
*************************************************************************************
* \brief
* Fast intra decision
*************************************************************************************
*/
void fast_mode_intra_decision(short *intra_skip, double min_rate)
{
int i;
int mb_available_up, mb_available_left, mb_available_up_left;
long SBE;
double AR = 0, ABE = 0;
PixelPos up; //!< pixel position p(0,-1)
PixelPos left[2]; //!< pixel positions p(-1, -1..0)
for (i=0;i<2;i++)
{
getNeighbour(img->current_mb_nr, -1 , i-1 , 0, &left[i]);
}
getNeighbour(img->current_mb_nr, 0 , -1 , 0, &up);
mb_available_up = up.available;
mb_available_up_left = left[0].available;
mb_available_left = left[1].available;
AR=(1.0/384)*min_rate;
SBE = 0;
if( (img->mb_y != (int)img->FrameHeightInMbs-1) && (img->mb_x != (int)img->PicWidthInMbs-1) && mb_available_left && mb_available_up)
{
for(i = 0; i < MB_BLOCK_SIZE; i++)
{
SBE += abs(imgY_org[img->opix_y][img->opix_x+i] - enc_picture->imgY[img->pix_y-1][img->pix_x+i]);
SBE += abs(imgY_org[img->opix_y+i][img->opix_x] - enc_picture->imgY[img->pix_y+i][img->pix_x-1]);
}
for(i = 0; i < 8; i++)
{
SBE += abs(imgUV_org[0][img->opix_c_y][img->opix_c_x+i] - enc_picture->imgUV[0][img->pix_c_y-1][img->pix_c_x+i]);
SBE += abs(imgUV_org[0][img->opix_c_y+i][img->opix_c_x] - enc_picture->imgUV[0][img->pix_c_y+i][img->pix_c_x-1]);
SBE += abs(imgUV_org[1][img->opix_c_y][img->opix_c_x+i] - enc_picture->imgUV[1][img->pix_c_y-1][img->pix_c_x+i]);
SBE += abs(imgUV_org[1][img->opix_c_y+i][img->opix_c_x] - enc_picture->imgUV[1][img->pix_c_y+i][img->pix_c_x-1]);
}
ABE = 1.0/64 * SBE;
}
else // Image boundary
{
ABE = 0;
}
if(AR <= ABE)
{
*intra_skip = 1;
}
}
/*!
*************************************************************************************
* \brief
* Initialize Encoding parameters for Macroblock
*************************************************************************************
*/
void init_enc_mb_params(Macroblock* currMB, RD_PARAMS *enc_mb, int intra, int bslice)
{
int mode;
int l,k;
//Setup list offset
enc_mb->list_offset[LIST_0] = LIST_0 + currMB->list_offset;
enc_mb->list_offset[LIST_1] = LIST_1 + currMB->list_offset;
enc_mb->curr_mb_field = ((img->MbaffFrameFlag)&&(currMB->mb_field));
enc_mb->best_ref[LIST_0] = 0;
enc_mb->best_ref[LIST_1] = -1;
// Set valid modes
enc_mb->valid[I8MB] = input->Transform8x8Mode;
enc_mb->valid[I4MB] = (input->Transform8x8Mode==2) ? 0:1;
enc_mb->valid[I16MB] = 1;
enc_mb->valid[IPCM] = (input->symbol_mode != CABAC && input->EnableIPCM);
enc_mb->valid[0] = (!intra );
enc_mb->valid[1] = (!intra && input->InterSearch16x16);
enc_mb->valid[2] = (!intra && input->InterSearch16x8);
enc_mb->valid[3] = (!intra && input->InterSearch8x16);
enc_mb->valid[4] = (!intra && input->InterSearch8x8);
enc_mb->valid[5] = (!intra && input->InterSearch8x4 && !(input->Transform8x8Mode==2));
enc_mb->valid[6] = (!intra && input->InterSearch4x8 && !(input->Transform8x8Mode==2));
enc_mb->valid[7] = (!intra && input->InterSearch4x4 && !(input->Transform8x8Mode==2));
enc_mb->valid[P8x8] = (enc_mb->valid[4] || enc_mb->valid[5] || enc_mb->valid[6] || enc_mb->valid[7]);
enc_mb->valid[12] = (img->type == SI_SLICE);
if(img->type==SP_SLICE)
{
if(si_frame_indicator)
{
enc_mb->valid[I8MB] = 0;
enc_mb->valid[IPCM] = 0;
enc_mb->valid[0] = 0;
enc_mb->valid[1] = 0;
enc_mb->valid[2] = 0;
enc_mb->valid[3] = 0;
enc_mb->valid[4] = 0;
enc_mb->valid[5] = 0;
enc_mb->valid[6] = 0;
enc_mb->valid[7] = 0;
enc_mb->valid[P8x8] = 0;
enc_mb->valid[12] = 0;
if(check_for_SI16())
{
enc_mb->valid[I4MB] = 0;
enc_mb->valid[I16MB] = 1;
}
else
{
enc_mb->valid[I4MB] = 1;
enc_mb->valid[I16MB] = 0;
}
}
}
if(img->type==SP_SLICE)
{
if(sp2_frame_indicator)
{
if(check_for_SI16())
{
enc_mb->valid[I8MB] = 0;
enc_mb->valid[IPCM] = 0;
enc_mb->valid[0] = 0;
enc_mb->valid[1] = 0;
enc_mb->valid[2] = 0;
enc_mb->valid[3] = 0;
enc_mb->valid[4] = 0;
enc_mb->valid[5] = 0;
enc_mb->valid[6] = 0;
enc_mb->valid[7] = 0;
enc_mb->valid[P8x8] = 0;
enc_mb->valid[12] = 0;
enc_mb->valid[I4MB] = 0;
enc_mb->valid[I16MB] = 1;
}
else
{
enc_mb->valid[I8MB] = 0;
enc_mb->valid[IPCM] = 0;
enc_mb->valid[0] = 0;
enc_mb->valid[I16MB] = 0;
}
}
}
//===== SET LAGRANGE PARAMETERS =====
// Note that these are now computed at the slice level to reduce
// computations and cleanup code.
if (bslice && img->nal_reference_idc)
{
enc_mb->lambda_md = img->lambda_md[5][img->qp];
enc_mb->lambda_me = img->lambda_me[5][img->qp];
enc_mb->lambda_mf = img->lambda_mf[5][img->qp];
}
else
{
enc_mb->lambda_md = img->lambda_md[img->type][img->qp];
enc_mb->lambda_me = img->lambda_me[img->type][img->qp];
enc_mb->lambda_mf = img->lambda_mf[img->type][img->qp];
}
// Initialize bipredME decisions
for (mode=0; mode<MAXMODE; mode++)
{
img->bi_pred_me[mode]=0;
}
if (!img->MbaffFrameFlag)
{
for (l = LIST_0; l < BI_PRED; l++)
{
for(k = 0; k < listXsize[l]; k++)
{
listX[l][k]->chroma_vector_adjustment= 0;
if(img->structure == TOP_FIELD && img->structure != listX[l][k]->structure)
listX[l][k]->chroma_vector_adjustment = -2;
if(img->structure == BOTTOM_FIELD && img->structure != listX[l][k]->structure)
listX[l][k]->chroma_vector_adjustment = 2;
}
}
}
else
{
if (enc_mb->curr_mb_field)
{
for (l = enc_mb->list_offset[LIST_0]; l <= enc_mb->list_offset[LIST_1]; l++)
{
for(k = 0; k < listXsize[l]; k++)
{
listX[l][k]->chroma_vector_adjustment= 0;
if(img->current_mb_nr % 2 == 0 && listX[l][k]->structure == BOTTOM_FIELD)
listX[l][k]->chroma_vector_adjustment = -2;
if(img->current_mb_nr % 2 == 1 && listX[l][k]->structure == TOP_FIELD)
listX[l][k]->chroma_vector_adjustment = 2;
}
}
}
else
{
for (l = enc_mb->list_offset[LIST_0]; l <= enc_mb->list_offset[LIST_1]; l++)
{
for(k = 0; k < listXsize[l]; k++)
listX[l][k]->chroma_vector_adjustment= 0;
}
}
}
}
/*!
*************************************************************************************
* \brief
* computation of prediction list (including biprediction) cost
*************************************************************************************
*/
void list_prediction_cost(int list, int block, int mode, RD_PARAMS enc_mb, int bmcost[5], char best_ref[2])
{
short ref;
int mcost;
int cur_list = list < BI_PRED ? enc_mb.list_offset[list] : enc_mb.list_offset[LIST_0];
//--- get cost and reference frame for forward prediction ---
if (list < BI_PRED)
{
for (ref=0; ref < listXsize[cur_list]; ref++)
{
if (!img->checkref || list || ref==0 || CheckReliabilityOfRef (block, list, ref, mode))
{
// limit the number of reference frames to 1 when switching SP frames are used
if((!input->sp2_frame_indicator && !input->sp_output_indicator)||
((input->sp2_frame_indicator || input->sp_output_indicator) && (img->type!=P_SLICE && img->type!=SP_SLICE))||
((input->sp2_frame_indicator || input->sp_output_indicator) && ((img->type==P_SLICE || img->type==SP_SLICE) &&(ref==0))))
{
mcost = (input->rdopt
? REF_COST (enc_mb.lambda_mf, ref, cur_list)
: (int) (2 * enc_mb.lambda_me * min(ref, 1)));
mcost += motion_cost[mode][list][ref][block];
if (mcost < bmcost[list])
{
bmcost[list] = mcost;
best_ref[list] = (char)ref;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -