📄 ch7_3_3.htm
字号:
<! Made by Html Translation Ver 1.0><html><head><title> 多项式契合及函数计算 </title></head><body BACKGROUND="../img1/bg0000.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/bg0000.gif"><script language="JAVASCRIPT"><!--if (navigator.onLine){document.write("<!-- Spidersoft WebZIP Ad Banner Insert -->");document.write("<TABLE width=100% border=0 cellpadding=0 cellspacing=0>");document.write("<TR>");document.write("<TD>");document.write("<ILAYER id=ad1 visibility=hidden height=60></ILAYER>");document.write("<NOLAYER>");document.write("<IFRAME SRC='http://www.spidersoft.com/ads/bwz468_60.htm' width=100% height=60 marginwidth=0 marginheight=0 hspace=0 vspace=0 frameborder=0 scrolling=no></IFRAME>");document.write("</NOLAYER>");document.write("</TD>");document.write("</TR>");document.write("</TABLE>");document.write("<!-- End of Spidersoft WebZIP Ad Banner Insert-->");} //--></script><!-- Spidersoft WebZIP Ad Banner Insert --><!-- End of Spidersoft WebZIP Ad Banner Insert--><font COLOR="#0000FF"><h1>7.3.3 多项式契合及函数计算</h1></font><hr><p>和 <font COLOR="#FF0000" FACE="Times New Roman">polyfit</font>有关的另一个函数是用来做多项式函数计算 <font COLOR="#FF0000" FACE="Times New Roman">polyval</font>,由 <font COLOR="#FF0000" FACE="Times New Roman">polyfit</font><font FACE="Times New Roman"> </font>算出多项式的各个系数 <font FACE="Times New Roman">(<img SRC="../img7/img00016.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img7/img00016.gif" WIDTH="108" HEIGHT="25">)</font>后,即可以 <font COLOR="#FF0000" FACE="Times New Roman">polyval</font><font FACE="Times New Roman"> </font>计算多项式的函数值。它的语法为<font COLOR="#FF0000" FACE="Times New Roman">polyval(coef,x)</font>,其中 <font COLOR="#FF0000" FACE="Times New Roman">coef</font><font FACE="Times New Roman"> </font>是多项式的各个系数所构成的阵列,<font COLOR="#FF0000" FACE="Times New Roman">x</font>则是要计算多项式值的<tt><font FACE="Courier New">x</font></tt>阵列。举一例说明 </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> x=[0 1 2 3 4 5];</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> y=[0 20 60 68 77 110];</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> coef=polyfit(x,y,1); % </font><font COLOR="#FF0000">计算线性回归的各项系数</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> ybest=polyval(coef,x); % </font><font COLOR="#FF0000">直接以</font><font COLOR="#FF0000" FACE="Times New Roman">polyval</font><font COLOR="#FF0000">计算多项式的数值 <br></font></p><p>这个函数 <font COLOR="#FF0000" FACE="Times New Roman">polyval</font>真是大大的好用,如果没有它的话,那我们要计算多项式的函数值还要费一番功夫。假设已有五阶的 多项式回归,要计算对应的多项式值,则须以下的步骤 </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> coef=polyfit(x,y,5);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a0=coef(1);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a1=coef(2);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a2=coef(3);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a3=coef(4);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a4=coef(5);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> a5=coef(6);</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> f=a0 + a1*x + a2*x.^2 + a3*x.^3 + a4*x.^4 + a5*x.^5;<br></font></p><p>我们接著示范从二阶到九阶的多项式回归的程式 </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> x=[0 1 2 3 4 5];</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> y=[0 20 60 68 77 110];</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> newx=0:0.05:5; % </font><font COLOR="#FF0000">以新阵列形成更小增量以利回归计算及绘图</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> for n=2:9</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> f(:,n)=polyval(polyfit(x,y,n),newx)';</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> plot(newx,f(:,n),x,y,'o')</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> title(['Poly. regression, deg=',int2str(n)])</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> xlabel('Time'), ylabel('Temp'), grid</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> pause % </font><font COLOR="#FF0000">每次要暂停看清楚图再执行下一步骤</font> </p><p><font COLOR="#FF0000" FACE="Times New Roman">>> end<br></font></p><p>在上述的 <font COLOR="#FF0000" FACE="Times New Roman">title</font>指令中我们示范了如何将一变数输入(<font COLOR="#FF0000" FACE="Times New Roman">n</font>代表多项式的阶数),是利用<font COLOR="#FF0000" FACE="Times New Roman">int2str</font>这个指令,它是用来 将一整数<font FACE="Times New Roman">(integer) </font>转换成为一个字串 <font FACE="Times New Roman">(string)</font>,因为在<font COLOR="#FF0000" FACE="Times New Roman">title</font>中只能以字串出现。此外在 <font COLOR="#FF0000" FACE="Times New Roman">title</font>指令中尚须以 <font COLOR="#FF0000" FACE="Times New Roman">[ ]</font><font FACE="Times New Roman"> </font>将所有 叙述包括在内。类似的指令尚有 <font COLOR="#FF0000" FACE="Times New Roman">num2str</font><font FACE="Times New Roman"> </font>它是用来将实数转换成一字串。有关这几个新介绍的详细说明,请参 考 <font COLOR="#FF0000" FACE="Times New Roman">title</font><font FACE="Times New Roman">, </font><font COLOR="#FF0000" FACE="Times New Roman">int2str</font><tt><font FACE="Courier New">, </font></tt><font COLOR="#FF0000" FACE="Times New Roman">num2str</font><font FACE="Times New Roman"> </font>的线上说明。 </p><hr><a HREF="ch7_3_2.htm" tppabs="http://webclass.ncu.edu.tw/~junwu/ch7_3_2.htm"><p><img SRC="../img1/lastpage.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/lastpage.gif" BORDER="0" WIDTH="42" HEIGHT="42"></a> <a HREF="../chapter8/ch8.htm" tppabs="http://webclass.ncu.edu.tw/~junwu/ch8.htm"><img SRC="../img1/nextpage.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/nextpage.gif" BORDER="0" HSPACE="10" WIDTH="42" HEIGHT="42"></a> <a HREF="../index.html" tppabs="http://webclass.ncu.edu.tw/~junwu/index.html"><img SRC="../img1/outline.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/outline.gif" BORDER="0" HSPACE="6" WIDTH="42" HEIGHT="42"></a><br><font SIZE="2" COLOR="#AA55FF">上一页 下一页 讲义大纲 </font><layer src="http://www.spidersoft.com/ads/bwz468_60.htm" visibility="hidden" id="a1" width="600" onload="moveToAbsolute(ad1.pageX,ad1.pageY); a1.clip.height=60;visibility='show';"></layer> </p></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -