⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smcrupdate.m

📁 Bayesian Model Selection
💻 M
字号:
function [mov,aUpdate,rUpdate] = smcrUpdate(aUpdate,rUpdate,res,mov,movO,x,y,par,bFunction,s,t);% PURPOSE : Performs the update move of the reversible jump MCMC algorithm.% INPUTS  : - aUpdate: Number of times the update move has been accepted.%           - rUpdate: Number of times the update move has been rejected.%           - mov : Current model parameters.%           - movO : Old model parameters.%           - x : Input data.%           - y : Target data.%           - par: Simulation parameters.%           - bFunction: Type of basis function.%           - t : Current time step.%           - s : Current sample.% AUTHOR  : Nando de Freitas - Thanks for the acknowledgement :-)% DATE    : 21-01-99if nargin < 10, error('Not enough input arguments.'); end[arbN,d] = size(x);   % N = number of data, d = dimension of x.[N,c] = size(y);      % c = dimension of y, i.e. number of outputs.insideUpdate=1;uU=rand(1);M=zeros(1,mov.k(s)+d+1);M(:,1) = 1;M(:,2:d+1) = x(t+1,:);for j=d+2:mov.k(s)+d+1,  M(:,j) = feval(bFunction,mov.mu{s}(j-d-1,:),x(t+1,:));end;yprR = M*mov.alpha{s};% PROPOSAL:% ========[oldk,arb] = size(movO.mu{s});MuProp=zeros(mov.k(s),d);if oldk==mov.k(s)  for i=1:d,    MuProp(:,i) = movO.mu{s}(:,i) + sqrt(par.dmu)*randn(mov.k(s),1);  end;  elseif oldk<mov.k(s)% Add basis function at the end.  for i=1:d,    MuProp(1:oldk,i) = movO.mu{s}(:,i) + sqrt(par.dmu)*randn(oldk,1);  end;   MuProp(oldk+1,:) = [x(t+1,:)+sqrt(par.mu02)*randn(1,d)];elseif oldk>mov.k(s)      % Delete basis function at the same position as in the prediction step.  for i=1:d,    if res.pos(s)==1      MuProp(:,i) = movO.mu{s}(2:oldk,i) + sqrt(par.dmu)*randn(mov.k(s),1);    elseif res.pos(s)==oldk      MuProp(:,i) = movO.mu{s}(1:oldk-1,i)+ sqrt(par.dmu)*randn(mov.k(s),1);    else      MuProp(:,i) = [movO.mu{s}(1:res.pos(s)-1,i); movO.mu{s}(res.pos(s)+1:oldk,i)]+ sqrt(par.dmu)*randn(mov.k(s),1);    end;   end; end;Mprop=zeros(1,mov.k(s)+d+1);Mprop(:,1) = 1;Mprop(:,2:d+1) = x(t+1,:);for j=d+2:mov.k(s)+d+1,  Mprop(:,j) = feval(bFunction,MuProp(j-d-1,:),x(t+1,:));end;yprP = Mprop*mov.alpha{s};% EVALUATE ACCEPTANCE:% ===================Q = par.dalpha.*eye(size(mov.P{s}));covP = exp(mov.sigma(s)) + Mprop*(mov.P{s}+Q)*Mprop';covR = exp(mov.sigma(s)) + M*(mov.P{s}+Q)*M';likP = exp(-0.5*(y(t+1,1)-yprP)*inv(covP)*(y(t+1,1)-yprP)');likR = exp(-0.5*(y(t+1,1)-yprR)*inv(covR)*(y(t+1,1)-yprR)');ratio = (likP)/(likR);acceptance = min(1,ratio);% METROPOLIS STEP:% ===============if (uU<acceptance),  mov.mu{s} = MuProp;  aUpdate=aUpdate+1;else  mov.mu{s} = mov.mu{s};  rUpdate=rUpdate+1;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -