📄 readme
字号:
WLSVM is a custom Weka classifier designed to give Weka users an easy access
to the effecient and fast SVM tool, Libsvm. WLSVM runs much faster
than Weka SMO class and suports all Libsvm features like nu-SVM classification,
one-class-SVM, and epsilon-SVM regression, and nu-SVM regression.
As a Weka custom classifier, WLSVM allows Libsvm users to experiment with ARFF
files and generate many useful statistics (e.g. Confusion matrix for cross validation
tests, Percision, Recall, ROC scores).
WLSVM is available at:
http://www.cs.iastate.edu/~yasser/WLSVM
- How to use
- unzip the file wlsvm.zip
- Build a java project
- Add the jars libsvm.jar and wlsvm.jar to your project
- use WLSVM as any other weka classifier
- Notes:
- your project should also have the weka.jar file.
- An example java file is also distributed
WLSVM options :
-S <int>
set type of SVM (default 0)
0 = C-SVC
1 = nu-SVC
2 = one-class SVM
3 = epsilon-SVR
4 = nu-SVR
-K <int>
set type of kernel function (default 2)
0 = linear: u'*v
1 = polynomial: (gamma*u'*v + coef0)^degree
2 = radial basis function: exp(-gamma*|u-v|^2)
3 = sigmoid: tanh(gamma*u'*v + coef0)
-D <int>
set degree in kernel function (default 3)
-G <double>
set gamma in kernel function (default 1/k)
-R <double>
set coef0 in kernel function (default 0)
-C <double>
set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-N <double>
set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-Z
whether to normalize input data, 0 or 1 (default 0)
-P <double>
set the epsilon in loss function of epsilon-SVR (default 0.1)
-M <double>
set cache memory size in MB (default 40)
-E <double>
set tolerance of termination criterion (default 0.001)
-H <int>
whether to use the shrinking heuristics, 0 or 1 (default 1)
-B <int>
whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-W <double>
set the parameters C of class i to weight[i]*C, for C-SVC (default 1)
Citation
If you would like to cite WLSVM, cite the following URL:
Yasser EL-Manzalawy and Vasant Honavar, WLSVM : Integrating LibSVM into Weka Environment, 2005. Software available at http://www.cs.iastate.edu/~yasser/wlsvm
The bibtex format is as follows
@Manual{yh05,
author = {Yasser EL-Manzalawy and Vasant Honavar},
title = {{WLSVM}: Integrating LibSVM into Weka Environment},
year = {2005},
note = {Software available at \url{http://www.cs.iastate.edu/~yasser/wlsvm}}
}
Contacts
If you have any problems using WLSVM or if you have any suggestions. Please contact Yasser EL-Manzalawy <yasser@cs.iastate.edu>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -