📄 pprime_p.c
字号:
/* mpz_probab_prime_p -- An implementation of the probabilistic primality test found in Knuth's Seminumerical Algorithms book. If the function mpz_probab_prime_p() returns 0 then n is not prime. If it returns 1, then n is 'probably' prime. If it returns 2, n is surely prime. The probability of a false positive is (1/4)**reps, where reps is the number of internal passes of the probabilistic algorithm. Knuth indicates that 25 passes are reasonable.Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001 Free SoftwareFoundation, Inc. Miller-Rabin code contributed by John Amanatides.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB. If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. */#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"static int isprime _PROTO ((unsigned long int t));intmpz_probab_prime_p (mpz_srcptr n, int reps){ mp_limb_t r; /* Handle small and negative n. */ if (mpz_cmp_ui (n, 1000000L) <= 0) { int is_prime; if (mpz_sgn (n) < 0) { /* Negative number. Negate and call ourselves. */ mpz_t n2; mpz_init (n2); mpz_neg (n2, n); is_prime = mpz_probab_prime_p (n2, reps); mpz_clear (n2); return is_prime; } is_prime = isprime (mpz_get_ui (n)); return is_prime ? 2 : 0; } /* If n is now even, it is not a prime. */ if ((mpz_get_ui (n) & 1) == 0) return 0;#if defined (PP) /* Check if n has small factors. */#if defined (PP_INVERTED) r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), SIZ(n), (mp_limb_t) PP, (mp_limb_t) PP_INVERTED);#else r = mpn_mod_1 (PTR(n), SIZ(n), (mp_limb_t) PP);#endif if (r % 3 == 0#if BITS_PER_MP_LIMB >= 4 || r % 5 == 0#endif#if BITS_PER_MP_LIMB >= 8 || r % 7 == 0#endif#if BITS_PER_MP_LIMB >= 16 || r % 11 == 0 || r % 13 == 0#endif#if BITS_PER_MP_LIMB >= 32 || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0#endif#if BITS_PER_MP_LIMB >= 64 || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0 || r % 47 == 0 || r % 53 == 0#endif ) { return 0; }#endif /* PP */ /* Do more dividing. We collect small primes, using umul_ppmm, until we overflow a single limb. We divide our number by the small primes product, and look for factors in the remainder. */ { unsigned long int ln2; unsigned long int q; mp_limb_t p1, p0, p; unsigned int primes[15]; int nprimes; nprimes = 0; p = 1; ln2 = mpz_sizeinbase (n, 2) / 30; ln2 = ln2 * ln2; for (q = PP_FIRST_OMITTED; q < ln2; q += 2) { if (isprime (q)) { umul_ppmm (p1, p0, p, q); if (p1 != 0) { r = mpn_mod_1 (PTR(n), SIZ(n), p); while (--nprimes >= 0) if (r % primes[nprimes] == 0) { ASSERT_ALWAYS (mpn_mod_1 (PTR(n), SIZ(n), (mp_limb_t) primes[nprimes]) == 0); return 0; } p = q; nprimes = 0; } else { p = p0; } primes[nprimes++] = q; } } } /* Perform a number of Miller-Rabin tests. */ return mpz_millerrabin (n, reps);}static intisprime (unsigned long int t){ unsigned long int q, r, d; if (t < 3 || (t & 1) == 0) return t == 2; for (d = 3, r = 1; r != 0; d += 2) { q = t / d; r = t - q * d; if (q < d) return 1; } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -