📄 millerrabin.c
字号:
/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality test found in Knuth's Seminumerical Algorithms book. If the function mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is 'probably' prime. The probability of a false positive is (1/4)**reps, where reps is the number of internal passes of the probabilistic algorithm. Knuth indicates that 25 passes are reasonable. THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN FUTURE GNU MP RELEASES.Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001 Free SoftwareFoundation, Inc. Contributed by John Amanatides.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB. If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. */#include "gmp.h"#include "gmp-impl.h"static int millerrabin _PROTO ((mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y, mpz_srcptr q, unsigned long int k));intmpz_millerrabin (mpz_srcptr n, int reps){ int r; mpz_t nm1, x, y, q; unsigned long int k; gmp_randstate_t rstate; int is_prime; TMP_DECL (marker); TMP_MARK (marker); MPZ_TMP_INIT (nm1, SIZ (n) + 1); mpz_sub_ui (nm1, n, 1L); MPZ_TMP_INIT (x, SIZ (n)); MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */ /* Perform a Fermat test. */ mpz_set_ui (x, 210L); mpz_powm (y, x, nm1, n); if (mpz_cmp_ui (y, 1L) != 0) { TMP_FREE (marker); return 0; } MPZ_TMP_INIT (q, SIZ (n)); /* Find q and k, where q is odd and n = 1 + 2**k * q. */ k = mpz_scan1 (nm1, 0L); mpz_tdiv_q_2exp (q, nm1, k); gmp_randinit (rstate, GMP_RAND_ALG_DEFAULT, 32L); is_prime = 1; for (r = 0; r < reps && is_prime; r++) { do mpz_urandomb (x, rstate, mpz_sizeinbase (n, 2) - 1); while (mpz_cmp_ui (x, 1L) <= 0); is_prime = millerrabin (n, nm1, x, y, q, k); } gmp_randclear (rstate); TMP_FREE (marker); return is_prime;}static intmillerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y, mpz_srcptr q, unsigned long int k){ unsigned long int i; mpz_powm (y, x, q, n); if (mpz_cmp_ui (y, 1L) == 0 || mpz_cmp (y, nm1) == 0) return 1; for (i = 1; i < k; i++) { mpz_powm_ui (y, y, 2L, n); if (mpz_cmp (y, nm1) == 0) return 1; if (mpz_cmp_ui (y, 1L) == 0) return 0; } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -