⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 powm.c

📁 tpm-emulator 0.1版本tpm芯片的软件模拟版本
💻 C
字号:
/* mpz_powm(res,base,exp,mod) -- Set RES to (base**exp) mod MOD.Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2002 Free SoftwareFoundation, Inc.  Contributed by Paul Zimmermann.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. */#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"#ifdef BERKELEY_MP#include "mp.h"#endif/* Set c <- tp/R^n mod m.   tp should have space for 2*n+1 limbs; clobber its most significant limb. */#if ! WANT_REDC_GLOBALstatic#endifvoidredc (mp_ptr cp, mp_srcptr mp, mp_size_t n, mp_limb_t Nprim, mp_ptr tp){  mp_limb_t cy;  mp_limb_t q;  mp_size_t j;  tp[2 * n] = 0;		/* carry guard */  for (j = 0; j < n; j++)    {      q = tp[0] * Nprim;      cy = mpn_addmul_1 (tp, mp, n, q);      mpn_incr_u (tp + n, cy);      tp++;    }  if (tp[n] != 0)    mpn_sub_n (cp, tp, mp, n);  else    MPN_COPY (cp, tp, n);}/* Compute t = a mod m, a is defined by (ap,an), m is defined by (mp,mn), and   t is defined by (tp,mn).  */static voidreduce (mp_ptr tp, mp_srcptr ap, mp_size_t an, mp_srcptr mp, mp_size_t mn){  mp_ptr qp;  TMP_DECL (marker);  TMP_MARK (marker);  qp = TMP_ALLOC_LIMBS (an - mn + 1);  mpn_tdiv_qr (qp, tp, 0L, ap, an, mp, mn);  TMP_FREE (marker);}#if REDUCE_EXPONENT/* Return the group order of the ring mod m.  */static mp_limb_tphi (mp_limb_t t){  mp_limb_t d, m, go;  go = 1;  if (t % 2 == 0)    {      t = t / 2;      while (t % 2 == 0)	{	  go *= 2;	  t = t / 2;	}    }  for (d = 3;; d += 2)    {      m = d - 1;      for (;;)	{	  unsigned long int q = t / d;	  if (q < d)	    {	      if (t <= 1)		return go;	      if (t == d)		return go * m;	      return go * (t - 1);	    }	  if (t != q * d)	    break;	  go *= m;	  m = d;	  t = q;	}    }}#endif/* average number of calls to redc for an exponent of n bits   with the sliding window algorithm of base 2^k: the optimal is   obtained for the value of k which minimizes 2^(k-1)+n/(k+1):   n\k    4     5     6     7     8   128    156*  159   171   200   261   256    309   307*  316   343   403   512    617   607*  610   632   688   1024   1231  1204  1195* 1207  1256   2048   2461  2399  2366  2360* 2396   4096   4918  4787  4707  4665* 4670*//* Use REDC instead of usual reduction for sizes < POWM_THRESHOLD.  In REDC   each modular multiplication costs about 2*n^2 limbs operations, whereas   using usual reduction it costs 3*K(n), where K(n) is the cost of a   multiplication using Karatsuba, and a division is assumed to cost 2*K(n),   for example using Burnikel-Ziegler's algorithm. This gives a theoretical   threshold of a*SQR_KARATSUBA_THRESHOLD, with a=(3/2)^(1/(2-ln(3)/ln(2))) ~   2.66.  *//* For now, also disable REDC when MOD is even, as the inverse can't handle   that.  At some point, we might want to make the code faster for that case,   perhaps using CRR.  */#ifndef POWM_THRESHOLD#define POWM_THRESHOLD  ((8 * SQR_KARATSUBA_THRESHOLD) / 3)#endif#define HANDLE_NEGATIVE_EXPONENT 1#undef REDUCE_EXPONENTvoid#ifndef BERKELEY_MPmpz_powm (mpz_ptr r, mpz_srcptr b, mpz_srcptr e, mpz_srcptr m)#else /* BERKELEY_MP */pow (mpz_srcptr b, mpz_srcptr e, mpz_srcptr m, mpz_ptr r)#endif /* BERKELEY_MP */{  mp_ptr xp, tp, qp, gp, this_gp;  mp_srcptr bp, ep, mp;  mp_size_t bn, es, en, mn, xn;  mp_limb_t invm, c;  unsigned long int enb;  mp_size_t i, K, j, l, k;  int m_zero_cnt, e_zero_cnt;  int sh;  int use_redc;#if HANDLE_NEGATIVE_EXPONENT  mpz_t new_b;#endif#if REDUCE_EXPONENT  mpz_t new_e;#endif  TMP_DECL (marker);  mp = PTR(m);  mn = ABSIZ (m);  if (mn == 0)    DIVIDE_BY_ZERO;  TMP_MARK (marker);  es = SIZ (e);  if (es <= 0)    {      if (es == 0)	{	  /* Exponent is zero, result is 1 mod m, i.e., 1 or 0 depending on if	     m equals 1.  */	  SIZ(r) = (mn == 1 && mp[0] == 1) ? 0 : 1;	  PTR(r)[0] = 1;	  TMP_FREE (marker);	/* we haven't really allocated anything here */	  return;	}#if HANDLE_NEGATIVE_EXPONENT      MPZ_TMP_INIT (new_b, mn + 1);      if (! mpz_invert (new_b, b, m))	DIVIDE_BY_ZERO;      b = new_b;      es = -es;#else      DIVIDE_BY_ZERO;#endif    }  en = es;#if REDUCE_EXPONENT  /* Reduce exponent by dividing it by phi(m) when m small.  */  if (mn == 1 && mp[0] < 0x7fffffffL && en * GMP_NUMB_BITS > 150)    {      MPZ_TMP_INIT (new_e, 2);      mpz_mod_ui (new_e, e, phi (mp[0]));      e = new_e;    }#endif  use_redc = mn < POWM_THRESHOLD && mp[0] % 2 != 0;  if (use_redc)    {      /* invm = -1/m mod 2^BITS_PER_MP_LIMB, must have m odd */      modlimb_invert (invm, mp[0]);      invm = -invm;    }  else    {      /* Normalize m (i.e. make its most significant bit set) as required by	 division functions below.  */      count_leading_zeros (m_zero_cnt, mp[mn - 1]);      m_zero_cnt -= GMP_NAIL_BITS;      if (m_zero_cnt != 0)	{	  mp_ptr new_mp;	  new_mp = TMP_ALLOC_LIMBS (mn);	  mpn_lshift (new_mp, mp, mn, m_zero_cnt);	  mp = new_mp;	}    }  /* Determine optimal value of k, the number of exponent bits we look at     at a time.  */  count_leading_zeros (e_zero_cnt, PTR(e)[en - 1]);  e_zero_cnt -= GMP_NAIL_BITS;  enb = en * GMP_NUMB_BITS - e_zero_cnt; /* number of bits of exponent */  k = 1;  K = 2;  while (2 * enb > K * (2 + k * (3 + k)))    {      k++;      K *= 2;    }  tp = TMP_ALLOC_LIMBS (2 * mn + 1);  qp = TMP_ALLOC_LIMBS (mn + 1);  gp = __GMP_ALLOCATE_FUNC_LIMBS (K / 2 * mn);  /* Compute x*R^n where R=2^BITS_PER_MP_LIMB.  */  bn = ABSIZ (b);  bp = PTR(b);  /* Handle |b| >= m by computing b mod m.  FIXME: It is not strictly necessary     for speed or correctness to do this when b and m have the same number of     limbs, perhaps remove mpn_cmp call.  */  if (bn > mn || (bn == mn && mpn_cmp (bp, mp, mn) >= 0))    {      /* Reduce possibly huge base while moving it to gp[0].  Use a function	 call to reduce, since we don't want the quotient allocation to	 live until function return.  */      if (use_redc)	{	  reduce (tp + mn, bp, bn, mp, mn);	/* b mod m */	  MPN_ZERO (tp, mn);	  mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); /* unnormnalized! */	}      else	{	  reduce (gp, bp, bn, mp, mn);	}    }  else    {      /* |b| < m.  We pad out operands to become mn limbs,  which simplifies	 the rest of the function, but slows things down when the |b| << m.  */      if (use_redc)	{	  MPN_ZERO (tp, mn);	  MPN_COPY (tp + mn, bp, bn);	  MPN_ZERO (tp + mn + bn, mn - bn);	  mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn);	}      else	{	  MPN_COPY (gp, bp, bn);	  MPN_ZERO (gp + bn, mn - bn);	}    }  /* Compute xx^i for odd g < 2^i.  */  xp = TMP_ALLOC_LIMBS (mn);  mpn_sqr_n (tp, gp, mn);  if (use_redc)    redc (xp, mp, mn, invm, tp);		/* xx = x^2*R^n */  else    mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);  this_gp = gp;  for (i = 1; i < K / 2; i++)    {      mpn_mul_n (tp, this_gp, xp, mn);      this_gp += mn;      if (use_redc)	redc (this_gp, mp, mn, invm, tp);	/* g[i] = x^(2i+1)*R^n */      else	mpn_tdiv_qr (qp, this_gp, 0L, tp, 2 * mn, mp, mn);    }  /* Start the real stuff.  */  ep = PTR (e);  i = en - 1;				/* current index */  c = ep[i];				/* current limb */  sh = GMP_NUMB_BITS - e_zero_cnt;	/* significant bits in ep[i] */  sh -= k;				/* index of lower bit of ep[i] to take into account */  if (sh < 0)    {					/* k-sh extra bits are needed */      if (i > 0)	{	  i--;	  c <<= (-sh);	  sh += GMP_NUMB_BITS;	  c |= ep[i] >> sh;	}    }  else    c >>= sh;  for (j = 0; c % 2 == 0; j++)    c >>= 1;  MPN_COPY (xp, gp + mn * (c >> 1), mn);  while (--j >= 0)    {      mpn_sqr_n (tp, xp, mn);      if (use_redc)	redc (xp, mp, mn, invm, tp);      else	mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);    }  while (i > 0 || sh > 0)    {      c = ep[i];      l = k;				/* number of bits treated */      sh -= l;      if (sh < 0)	{	  if (i > 0)	    {	      i--;	      c <<= (-sh);	      sh += GMP_NUMB_BITS;	      c |= ep[i] >> sh;	    }	  else	    {	      l += sh;			/* last chunk of bits from e; l < k */	    }	}      else	c >>= sh;      c &= ((mp_limb_t) 1 << l) - 1;      /* This while loop implements the sliding window improvement--loop while	 the most significant bit of c is zero, squaring xx as we go. */      while ((c >> (l - 1)) == 0 && (i > 0 || sh > 0))	{	  mpn_sqr_n (tp, xp, mn);	  if (use_redc)	    redc (xp, mp, mn, invm, tp);	  else	    mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);	  if (sh != 0)	    {	      sh--;	      c = (c << 1) + ((ep[i] >> sh) & 1);	    }	  else	    {	      i--;	      sh = GMP_NUMB_BITS - 1;	      c = (c << 1) + (ep[i] >> sh);	    }	}      /* Replace xx by xx^(2^l)*x^c.  */      if (c != 0)	{	  for (j = 0; c % 2 == 0; j++)	    c >>= 1;	  /* c0 = c * 2^j, i.e. xx^(2^l)*x^c = (A^(2^(l - j))*c)^(2^j) */	  l -= j;	  while (--l >= 0)	    {	      mpn_sqr_n (tp, xp, mn);	      if (use_redc)		redc (xp, mp, mn, invm, tp);	      else		mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);	    }	  mpn_mul_n (tp, xp, gp + mn * (c >> 1), mn);	  if (use_redc)	    redc (xp, mp, mn, invm, tp);	  else	    mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);	}      else	j = l;				/* case c=0 */      while (--j >= 0)	{	  mpn_sqr_n (tp, xp, mn);	  if (use_redc)	    redc (xp, mp, mn, invm, tp);	  else	    mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn);	}    }  if (use_redc)    {      /* Convert back xx to xx/R^n.  */      MPN_COPY (tp, xp, mn);      MPN_ZERO (tp + mn, mn);      redc (xp, mp, mn, invm, tp);      if (mpn_cmp (xp, mp, mn) >= 0)	mpn_sub_n (xp, xp, mp, mn);    }  else    {      if (m_zero_cnt != 0)	{	  mp_limb_t cy;	  cy = mpn_lshift (tp, xp, mn, m_zero_cnt);	  tp[mn] = cy;	  mpn_tdiv_qr (qp, xp, 0L, tp, mn + (cy != 0), mp, mn);	  mpn_rshift (xp, xp, mn, m_zero_cnt);	}    }  xn = mn;  MPN_NORMALIZE (xp, xn);  if ((ep[0] & 1) && SIZ(b) < 0 && xn != 0)    {      mp = PTR(m);                    /* want original, unnormalized m */      mpn_sub (xp, mp, mn, xp, xn);      xn = mn;      MPN_NORMALIZE (xp, xn);    }  MPZ_REALLOC (r, xn);  SIZ (r) = xn;  MPN_COPY (PTR(r), xp, xn);  __GMP_FREE_FUNC_LIMBS (gp, K / 2 * mn);  TMP_FREE (marker);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -