📄 selectgoodfeatures.c
字号:
* Given the three distinct elements of the symmetric 2x2 matrix
* [gxx gxy]
* [gxy gyy],
* Returns the minimum eigenvalue of the matrix.
*/
static float _minEigenvalue(float gxx, float gxy, float gyy)
{
//return (gxx + gyy - fsqrt((gxx - gyy)*(gxx - gyy) + 4*gxy*gxy))/2.0;
return (float)((gxx + gyy - sqrt((gxx - gyy)*(gxx - gyy) + 4*gxy*gxy))/2.0);
}
/*********************************************************************/
void _KLTSelectGoodFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList featurelist,
selectionMode mode)
{
_KLT_FloatImage floatimg, gradx, grady;
int window_hw, window_hh;
int *pointlist;
int npoints = 0;
KLT_BOOL overwriteAllFeatures = (mode == SELECTING_ALL) ?
TRUE : FALSE;
KLT_BOOL floatimages_created = FALSE;
/* Check window size (and correct if necessary) */
if (tc->window_width % 2 != 1) {
tc->window_width = tc->window_width+1;
KLTWarning("Tracking context's window width must be odd. "
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height % 2 != 1) {
tc->window_height = tc->window_height+1;
KLTWarning("Tracking context's window height must be odd. "
"Changing to %d.\n", tc->window_height);
}
if (tc->window_width < 3) {
tc->window_width = 3;
KLTWarning("Tracking context's window width must be at least three. \n"
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height < 3) {
tc->window_height = 3;
KLTWarning("Tracking context's window height must be at least three. \n"
"Changing to %d.\n", tc->window_height);
}
window_hw = tc->window_width/2;
window_hh = tc->window_height/2;
/* Create pointlist, which is a simplified version of a featurelist, */
/* for speed. Contains only integer locations and values. */
pointlist = (int *) malloc(ncols * nrows * 3 * sizeof(int));
/* Create temporary images, etc. */
if (mode == REPLACING_SOME &&
tc->sequentialMode && tc->pyramid_last != NULL) {
floatimg = ((_KLT_Pyramid) tc->pyramid_last)->img[0];
gradx = ((_KLT_Pyramid) tc->pyramid_last_gradx)->img[0];
grady = ((_KLT_Pyramid) tc->pyramid_last_grady)->img[0];
assert(gradx != NULL);
assert(grady != NULL);
} else {
floatimages_created = TRUE;
floatimg = _KLTCreateFloatImage(ncols, nrows);
gradx = _KLTCreateFloatImage(ncols, nrows);
grady = _KLTCreateFloatImage(ncols, nrows);
if (tc->smoothBeforeSelecting) {
_KLT_FloatImage tmpimg;
tmpimg = _KLTCreateFloatImage(ncols, nrows);
_KLTToFloatImage(img, ncols, nrows, tmpimg);
_KLTComputeSmoothedImage(tmpimg, _KLTComputeSmoothSigma(tc), floatimg);
_KLTFreeFloatImage(tmpimg);
} else _KLTToFloatImage(img, ncols, nrows, floatimg);
/* Compute gradient of image in x and y direction */
_KLTComputeGradients(floatimg, tc->grad_sigma, gradx, grady);
}
/* Write internal images */
if (tc->writeInternalImages) {
_KLTWriteFloatImageToPGM(floatimg, "kltimg_sgfrlf.pgm");
_KLTWriteFloatImageToPGM(gradx, "kltimg_sgfrlf_gx.pgm");
_KLTWriteFloatImageToPGM(grady, "kltimg_sgfrlf_gy.pgm");
}
/* Compute trackability of each image pixel as the minimum
of the two eigenvalues of the Z matrix */
{
register float gx, gy;
register float gxx, gxy, gyy;
register int xx, yy;
register int *ptr;
float val;
unsigned int limit = 1;
int borderx = tc->borderx; /* Must not touch cols */
int bordery = tc->bordery; /* lost by convolution */
int x, y;
int i;
if (borderx < window_hw) borderx = window_hw;
if (bordery < window_hh) bordery = window_hh;
/* Find largest value of an int */
for (i = 0 ; i < sizeof(int) ; i++) limit *= 256;
limit = limit/2 - 1;
/* For most of the pixels in the image, do ... */
ptr = pointlist;
for (y = bordery ; y < nrows - bordery ; y += tc->nSkippedPixels + 1)
for (x = borderx ; x < ncols - borderx ; x += tc->nSkippedPixels + 1) {
/* Sum the gradients in the surrounding window */
gxx = 0; gxy = 0; gyy = 0;
for (yy = y-window_hh ; yy <= y+window_hh ; yy++)
for (xx = x-window_hw ; xx <= x+window_hw ; xx++) {
gx = *(gradx->data + ncols*yy+xx);
gy = *(grady->data + ncols*yy+xx);
gxx += gx * gx;
gxy += gx * gy;
gyy += gy * gy;
}
/* Store the trackability of the pixel as the minimum
of the two eigenvalues */
*ptr++ = x;
*ptr++ = y;
val = _minEigenvalue(gxx, gxy, gyy);
if (val > limit) {
KLTWarning("(_KLTSelectGoodFeatures) minimum eigenvalue %f is "
"greater than the capacity of an int; setting "
"to maximum value", val);
val = (float)limit;
}
*ptr++ = (int) val;
npoints++;
}
}
/* Sort the features */
_sortPointList(pointlist, npoints);
/* Check tc->mindist */
if (tc->mindist < 0) {
KLTWarning("(_KLTSelectGoodFeatures) Tracking context field tc->mindist "
"is negative (%d); setting to zero", tc->mindist);
tc->mindist = 0;
}
/* Enforce minimum distance between features */
_enforceMinimumDistance(
pointlist,
npoints,
featurelist,
ncols, nrows,
tc->mindist,
tc->min_eigenvalue,
overwriteAllFeatures);
/* Free memory */
free(pointlist);
if (floatimages_created) {
_KLTFreeFloatImage(floatimg);
_KLTFreeFloatImage(gradx);
_KLTFreeFloatImage(grady);
}
}
/*********************************************************************
* KLTSelectGoodFeatures
*
* Main routine, visible to the outside. Finds the good features in
* an image.
*
* INPUTS
* tc: Contains parameters used in computation (size of image,
* size of window, min distance b/w features, sigma to compute
* image gradients, # of features desired).
* img: Pointer to the data of an image (probably unsigned chars).
*
* OUTPUTS
* features: List of features. The member nFeatures is computed.
*/
void KLTSelectGoodFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList fl)
{
if (KLT_verbose >= 1) {
fprintf(stderr, "(KLT) Selecting the %d best features "
"from a %d by %d image... ", fl->nFeatures, ncols, nrows);
fflush(stderr);
}
_KLTSelectGoodFeatures(tc, img, ncols, nrows,
fl, SELECTING_ALL);
if (KLT_verbose >= 1) {
fprintf(stderr, "\n\t%d features found.\n",
KLTCountRemainingFeatures(fl));
if (tc->writeInternalImages)
fprintf(stderr, "\tWrote images to 'kltimg_sgfrlf*.pgm'.\n");
fflush(stderr);
}
}
/*********************************************************************
* KLTReplaceLostFeatures
*
* Main routine, visible to the outside. Replaces the lost features
* in an image.
*
* INPUTS
* tc: Contains parameters used in computation (size of image,
* size of window, min distance b/w features, sigma to compute
* image gradients, # of features desired).
* img: Pointer to the data of an image (probably unsigned chars).
*
* OUTPUTS
* features: List of features. The member nFeatures is computed.
*/
void KLTReplaceLostFeatures(
KLT_TrackingContext tc,
KLT_PixelType *img,
int ncols,
int nrows,
KLT_FeatureList fl)
{
int nLostFeatures = fl->nFeatures - KLTCountRemainingFeatures(fl);
if (KLT_verbose >= 1) {
fprintf(stderr, "(KLT) Attempting to replace %d features "
"in a %d by %d image... ", nLostFeatures, ncols, nrows);
fflush(stderr);
}
/* If there are any lost features, replace them */
if (nLostFeatures > 0)
_KLTSelectGoodFeatures(tc, img, ncols, nrows,
fl, REPLACING_SOME);
if (KLT_verbose >= 1) {
fprintf(stderr, "\n\t%d features replaced.\n",
nLostFeatures - fl->nFeatures + KLTCountRemainingFeatures(fl));
if (tc->writeInternalImages)
fprintf(stderr, "\tWrote images to 'kltimg_sgfrlf*.pgm'.\n");
fflush(stderr);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -