📄 besselh.m
字号:
function [w,ierr] = besselh(nu,k,z,scale)
%BESSELH Bessel function of the third kind (Hankel function).
% H = BESSELH(NU,K,Z), for K = 1 or 2, computes the Hankel function
% H1_nu(Z) or H2_nu(Z) for each element of the complex array Z.
%
% H = BESSELH(NU,Z) uses K = 1.
%
% H = BESSELH(NU,K,Z,0) is the same as BESSELH(NU,K,Z)
%
% H = BESSELH(NU,1,Z,1) scales H1_nu(z) by exp(-i*z)))
% H = BESSELH(NU,2,Z,1) scales H2_nu(z) by exp(+i*z)))
%
% If NU and Z are arrays of the same size, the result is also that size.
% If either input is a scalar, it is expanded to the other input's size.
% If one input is a row vector and the other is a column vector, the
% result is a two-dimensional table of function values.
%
% [H,IERR] = BESSELH(NU,K,Z) also returns an array of error flags.
% ierr = 1 Illegal arguments.
% ierr = 2 Overflow. Return Inf.
% ierr = 3 Some loss of accuracy in argument reduction.
% ierr = 4 Complete loss of accuracy, z or nu too large.
% ierr = 5 No convergence. Return NaN.
%
% The relationship between the Hankel and Bessel functions is:
%
% besselh(nu,1,z) = besselj(nu,z) + i*bessely(nu,z)
% besselh(nu,2,z) = besselj(nu,z) - i*bessely(nu,z)
%
% Example:
% This example generates the contour plot of the modulus and
% phase of the Hankel Function H1_0(z) shown on page 359 of
% Abramowitz and Stegun, "Handbook of Mathematical Functions."
%
% [X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
% H = besselh(0,1,X+i*Y);
% contour(X,Y,abs(H),0:0.2:3.2), hold on
% contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off
%
% This M-file uses a MEX interface to a Fortran library by D. E. Amos.
%
% Class support for inputs NU and Z:
% float: double, single
%
% See also BESSELJ, BESSELY, BESSELI, BESSELK.
% Reference:
% D. E. Amos, "A subroutine package for Bessel functions of a complex
% argument and nonnegative order", Sandia National Laboratory Report,
% SAND85-1018, May, 1985.
%
% D. E. Amos, "A portable package for Bessel functions of a complex
% argument and nonnegative order", Trans. Math. Software, 1986.
%
% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 1.19.4.2 $ $Date: 2005/06/21 19:37:28 $
if nargin == 2, z = k; k = 1; end
if nargin <= 3, scale = 0; end
[msg,nu,z,siz] = besschk(nu,z); error(msg);
[w,ierr] = besselmx(double('H')*double(k),nu,z,scale);
% clean up w in case besselmx left an all-zero imaginary part
if ~isempty(w) && all(all(imag(w) == 0)), w = real(w); end
w = reshape(w,siz);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -