📄 elm_multioutputregression.m
字号:
function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)
% Usage: elm-MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)
% OR: [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm-MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)
%
% Input:
% TrainingData_File - Filename of training data set
% TestingData_File - Filename of testing data set
% No_of_Output - Number of outputs for regression
% NumberofHiddenNeurons - Number of hidden neurons assigned to the ELM
% ActivationFunction - Type of activation function:
% 'sig' for Sigmoidal function
% 'sin' for Sine function
% 'hardlim' for Hardlim function
%
% Output:
% TrainingTime - Time (seconds) spent on training ELM
% TestingTime - Time (seconds) spent on predicting ALL testing data
% TrainingAccuracy - Training accuracy:
% RMSE for regression
% TestingAccuracy - Testing accuracy:
% RMSE for regression
%
%%%% Authors: MR QIN-YU ZHU AND DR GUANG-BIN HUANG
%%%% NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE
%%%% EMAIL: EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG
%%%% WEBSITE: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
%%%% DATE: APRIL 2004
%%%%%%%%%%% Load training dataset
train_data=load(TrainingData_File);
T=train_data(:,1:No_of_Output)';
P=train_data(:,No_of_Output+1:size(train_data,2))';
clear train_data; % Release raw training data array
%%%%%%%%%%% Load testing dataset
test_data=load(TestingData_File);
TV.T=test_data(:,1:No_of_Output)';
TV.P=test_data(:,No_of_Output+1:size(test_data,2))';
clear test_data; % Release raw testing data array
NumberofTrainingData=size(P,2);
NumberofTestingData=size(TV.P,2);
NumberofInputNeurons=size(P,1);
%%%%%%%%%%% Calculate weights & biases
start_time_train=cputime;
%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases BiasofHiddenNeurons (b_i) of hidden neurons
InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;
BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);
tempH=InputWeight*P;
clear P; % Release input of training data
ind=ones(1,NumberofTrainingData);
BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix BiasofHiddenNeurons to match the demention of H
tempH=tempH+BiasMatrix;
%%%%%%%%%%% Calculate hidden neuron output matrix H
switch lower(ActivationFunction)
case {'sig','sigmoid'}
%%%%%%%% Sigmoid
H = 1 ./ (1 + exp(-tempH));
case {'sin','sine'}
%%%%%%%% Sine
H = sin(tempH);
case {'hardlim'}
%%%%%%%% Hard Limit
H = hardlim(tempH);
%%%%%%%% More activation functions can be added here
end
clear tempH; % Release the temparary array for calculation of hidden neuron output matrix H
%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)
OutputWeight=pinv(H') * T';
end_time_train=cputime;
TrainingTime=end_time_train-start_time_train % Calculate CPU time (seconds) spent for training ELM
%%%%%%%%%%% Calculate the training accuracy
Y=(H' * OutputWeight)'; % Y: the actual output of the training data
TrainingAccuracy=sqrt(mse(T - Y)) % Calculate training accuracy (RMSE) for regression case
clear H;
%%%%%%%%%%% Calculate the output of testing input
start_time_test=cputime;
tempH_test=InputWeight*TV.P;
clear TV.P; % Release input of testing data
ind=ones(1,NumberofTestingData);
BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix BiasofHiddenNeurons to match the demention of H
tempH_test=tempH_test + BiasMatrix;
switch lower(ActivationFunction)
case {'sig','sigmoid'}
%%%%%%%% Sigmoid
H_test = 1 ./ (1 + exp(-tempH_test));
case {'sin','sine'}
%%%%%%%% Sine
H_test = sin(tempH_test);
case {'hardlim'}
%%%%%%%% Hard Limit
H_test = hardlim(tempH_test);
%%%%%%%% More activation functions can be added here
end
TY=(H_test' * OutputWeight)'; % TY: the actual output of the testing data
end_time_test=cputime;
TestingTime=end_time_test-start_time_test % Calculate CPU time (seconds) spent by ELM predicting the whole testing data
TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for regression case
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -