⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elm_multioutputregression.m

📁 新神经网络 Extreme Learning Machine 比SVM快
💻 M
字号:
function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm_MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)

% Usage: elm-MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)
% OR:    [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm-MultiOutputRegression(TrainingData_File, TestingData_File, No_of_Output, NumberofHiddenNeurons, ActivationFunction)
%
% Input:
% TrainingData_File     - Filename of training data set
% TestingData_File      - Filename of testing data set
% No_of_Output          - Number of outputs for regression
% NumberofHiddenNeurons - Number of hidden neurons assigned to the ELM
% ActivationFunction    - Type of activation function:
%                           'sig' for Sigmoidal function
%                           'sin' for Sine function
%                           'hardlim' for Hardlim function
%
% Output: 
% TrainingTime          - Time (seconds) spent on training ELM
% TestingTime           - Time (seconds) spent on predicting ALL testing data
% TrainingAccuracy      - Training accuracy: 
%                           RMSE for regression
% TestingAccuracy       - Testing accuracy: 
%                           RMSE for regression

%
    %%%%    Authors:    MR QIN-YU ZHU AND DR GUANG-BIN HUANG
    %%%%    NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE
    %%%%    EMAIL:      EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG
    %%%%    WEBSITE:    http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
    %%%%    DATE:       APRIL 2004

%%%%%%%%%%% Load training dataset
train_data=load(TrainingData_File);
T=train_data(:,1:No_of_Output)';
P=train_data(:,No_of_Output+1:size(train_data,2))';
clear train_data;                                   %   Release raw training data array

%%%%%%%%%%% Load testing dataset
test_data=load(TestingData_File);
TV.T=test_data(:,1:No_of_Output)';
TV.P=test_data(:,No_of_Output+1:size(test_data,2))';
clear test_data;                                    %   Release raw testing data array

NumberofTrainingData=size(P,2);
NumberofTestingData=size(TV.P,2);
NumberofInputNeurons=size(P,1);

%%%%%%%%%%% Calculate weights & biases
start_time_train=cputime;

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases BiasofHiddenNeurons (b_i) of hidden neurons
InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;
BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);
tempH=InputWeight*P;
clear P;                                            %   Release input of training data 
ind=ones(1,NumberofTrainingData);
BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix BiasofHiddenNeurons to match the demention of H
tempH=tempH+BiasMatrix;

%%%%%%%%%%% Calculate hidden neuron output matrix H
switch lower(ActivationFunction)
    case {'sig','sigmoid'}
        %%%%%%%% Sigmoid 
        H = 1 ./ (1 + exp(-tempH));
    case {'sin','sine'}
        %%%%%%%% Sine
        H = sin(tempH);    
    case {'hardlim'}
        %%%%%%%% Hard Limit
        H = hardlim(tempH);            
        %%%%%%%% More activation functions can be added here                
end
clear tempH;                                        %   Release the temparary array for calculation of hidden neuron output matrix H

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)
OutputWeight=pinv(H') * T';
end_time_train=cputime;
TrainingTime=end_time_train-start_time_train        %   Calculate CPU time (seconds) spent for training ELM

%%%%%%%%%%% Calculate the training accuracy
Y=(H' * OutputWeight)';                             %   Y: the actual output of the training data
TrainingAccuracy=sqrt(mse(T - Y))               %   Calculate training accuracy (RMSE) for regression case
clear H;

%%%%%%%%%%% Calculate the output of testing input
start_time_test=cputime;
tempH_test=InputWeight*TV.P;
clear TV.P;             %   Release input of testing data             
ind=ones(1,NumberofTestingData);
BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix BiasofHiddenNeurons to match the demention of H
tempH_test=tempH_test + BiasMatrix;
switch lower(ActivationFunction)
    case {'sig','sigmoid'}
        %%%%%%%% Sigmoid 
        H_test = 1 ./ (1 + exp(-tempH_test));
    case {'sin','sine'}
        %%%%%%%% Sine
        H_test = sin(tempH_test);        
    case {'hardlim'}
        %%%%%%%% Hard Limit
        H_test = hardlim(tempH_test);        
        %%%%%%%% More activation functions can be added here        
end
TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the testing data
end_time_test=cputime;
TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) spent by ELM predicting the whole testing data

TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy (RMSE) for regression case

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -