⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 简单的遗传算法源代码.txt

📁 一个遗传算法 这是一个非常简单的遗传算法源代码
💻 TXT
字号:
 简单的遗传算法源代码     
导读: 
  文章由算法源码吧(www.sfcode.cn)收集 
  这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的 文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 
  /**************************************************************************/ 
  /* This is a simple genetic algorithm implementation where the */ 
  /* evaluation function takes positive values only and the */ 
  /* fitness of an individual is the same as the value of the */ 
  /* objective function */ 
  /**************************************************************************/ 
  #include 
  #include 
  #include 
  /* Change any of these parameters to match your needs */ 
  #define POPSIZE 50 /* population size */ 
  #define MAXGENS 1000 /* max. number of generations */ 
  #define NVARS 3 /* no. of problem variables */ 
  #define PXOVER 0.8 /* probability of crossover */ 
  #define PMUTATION 0.15 /* probability of mutation */ 
  #define TRUE 1 
  #define FALSE 0 
  int generation; /* current generation no. */ 
  int cur_best; /* best individual */ 
  FILE *galog; /* an output file */ 
  struct genotype /* genotype (GT), a member of the population */ 
  { 
  double gene[NVARS]; /* a string of variables */ 
  double fitness; /* GT's fitness */ 
  double upper[NVARS]; /* GT's variables upper bound */ 
  double lower[NVARS]; /* GT's variables lower bound */ 
  double rfitness; /* relative fitness */ 
  double cfitness; /* cumulative fitness */ 
  }; 
  struct genotype population[POPSIZE+1]; /* population */ 
  struct genotype newpopulation[POPSIZE+1]; /* new population; */ 
  /* replaces the */ 
  /* old generation */ 
  /* Declaration of procedures used by this genetic algorithm */ 
  void initialize(void); 
  double randval(double, double); 
  void evaluate(void); 
  void keep_the_best(void); 
  void elitist(void); 
  void select(void); 
  void crossover(void); 
  void Xover(int,int); 
  void swap(double *, double *); 
  void mutate(void); 
  void report(void); 
  /***************************************************************/ 
  /* Initialization function: Initializes the values of genes */ 
  /* within the variables bounds. It also initializes (to zero) */ 
  /* all fitness values for each member of the population. It */ 
  /* reads upper and lower bounds of each variable from the */ 
  /* input file `gadata.txt'. It randomly generates values */ 
  /* between these bounds for each gene of each genotype in the */ 
  /* population. The format of the input file `gadata.txt' is */ 
  /* var1_lower_bound var1_upper bound */ 
  /* var2_lower_bound var2_upper bound ... */ 
  /***************************************************************/ 
  void initialize(void) 
  { 
  FILE *infile; 
  int i, j; 
  double lbound, ubound; 
  if ((infile = fopen("gadata.txt","r"))==NULL) 
  { 
  fprintf(galog,"\nCannot open input file!\n"); 
  exit(1); 
  } 
  /* initialize variables within the bounds */ 
  for (i = 0; i   { 
  fscanf(infile, "%lf",&lbound); 
  fscanf(infile, "%lf",&ubound); 
  for (j = 0; j   { 
  population[j].fitness = 0; 
  population[j].rfitness = 0; 
  population[j].cfitness = 0; 
  population[j].lower[i] = lbound; 
  population[j].upper[i]= ubound; 
  population[j].gene[i] = randval(population[j].lower[i], 
  population[j].upper[i]); 
  } 
  } 
  fclose(infile); 
  } 
  /***********************************************************/ 
  /* Random value generator: Generates a value within bounds */ 
  /***********************************************************/ 
  double randval(double low, double high) 
  { 
  double val; 
  val = ((double)(rand()%1000)/1000.0)*(high - low) + low; 
  return(val); 
  } 
  /*************************************************************/ 
  /* Evaluation function: This takes a user defined function. */ 
  /* Each time this is changed, the code has to be recompiled. */ 
  /* The current function is: x[1]^2-x[1]*x[2]+x[3] */ 
  /*************************************************************/ 
  void evaluate(void) 
  { 
  int mem; 
  int i; 
  double x[NVARS+1]; 
  for (mem = 0; mem   { 
  for (i = 0; i   x[i+1] = population[mem].gene[i]; 
  population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; 
  } 
  } 
  /***************************************************************/ 
  /* Keep_the_best function: This function keeps track of the */ 
  /* best member of the population. Note that the last entry in */ 
  /* the array Population holds a copy of the best individual */ 
  /***************************************************************/ 
  void keep_the_best() 
  { 
  int mem; 
  int i; 
  cur_best = 0; /* stores the index of the best individual */ 
  for (mem = 0; mem   { 
  if (population[mem].fitness >population[POPSIZE].fitness) 
  { 
  cur_best = mem; 
  population[POPSIZE].fitness = population[mem].fitness; 
  } 
  } 
  /* once the best member in the population is found, copy the genes */ 
  for (i = 0; i   population[POPSIZE].gene[i] = population[cur_best].gene[i]; 
  } 
  /****************************************************************/ 
  /* Elitist function: The best member of the previous generation */ 
  /* is stored as the last in the array. If the best member of */ 
  /* the current generation is worse then the best member of the */ 
  /* previous generation, the latter one would replace the worst */ 
  /* member of the current population */ 
  /****************************************************************/ 
  void elitist() 
  { 
  int i; 
  double best, worst; /* best and worst fitness values */ 
  int best_mem, worst_mem; /* indexes of the best and worst member */ 
  best = population[0].fitness; 
  worst = population[0].fitness; 
  for (i = 0; i   { 
  if(population[i].fitness >population[i+1].fitness) 
  { 
  if (population[i].fitness >= best) 
  { 
  best = population[i].fitness; 
  best_mem = i; 
  } 
  if (population[i+1].fitness <= worst) 
  { 
  worst = population[i+1].fitness; 
  worst_mem = i + 1; 
  } 
  } 
  else 
  { 
  if (population[i].fitness <= worst) 
  { 
  worst = population[i].fitness; 
  worst_mem = i; 
  } 
  if (population[i+1].fitness >= best) 
  { 
  best = population[i+1].fitness; 
  best_mem = i + 1; 
  } 
  } 
  } 
  /* if best individual from the new population is better than */ 
  /* the best individual from the previous population, then */ 
  /* copy the best from the new population; else replace the */ 
  /* worst individual from the current population with the */ 
  /* best one from the previous generation */ 
  if (best >= population[POPSIZE].fitness) 
  { 
  for (i = 0; i   population[POPSIZE].gene[i] = population[best_mem].gene[i]; 
  population[POPSIZE].fitness = population[best_mem].fitness; 
  } 
  else 
  { 
  for (i = 0; i   population[worst_mem].gene[i] = population[POPSIZE].gene[i]; 
  population[worst_mem].fitness = population[POPSIZE].fitness; 
  } 
  } 
  /**************************************************************/ 
  /* Selection function: Standard proportional selection for */ 
  /* maximization problems incorporating elitist model - makes */ 
  /* sure that the best member survives */ 
  /**************************************************************/ 
  void select(void) 
  { 
  int mem, i, j, k; 
  double sum = 0; 
  double p; 
  /* find total fitness of the population */ 
  for (mem = 0; mem   { 
  sum += population[mem].fitness; 
  } 
  /* calculate relative fitness */ 
  for (mem = 0; mem   { 
  population[mem].rfitness = population[mem].fitness/sum; 
  } 
  population[0].cfitness = population[0].rfitness; 
  /* calculate cumulative fitness */ 
  for (mem = 1; mem   { 
  population[mem].cfitness = population[mem-1].cfitness + 
  population[mem].rfitness; 
  } 
  /* finally select survivors using cumulative fitness. */ 
  for (i = 0; i   { 
  p = rand()%1000/1000.0; 
  if (p   newpopulation[i] = population[0]; 
  else 
  { 
  for (j = 0; j   if (p >= population[j].cfitness && 
  p  newpopulation[i] = population[j+1]; 
  } 
  } 
  /* once a new population is created, copy it back */ 
  for (i = 0; i   population[i] = newpopulation[i]; 
  } 
  /***************************************************************/ 
  /* Crossover selection: selects two parents that take part in */ 
  /* the crossover. Implements a single point crossover */ 
  /***************************************************************/ 
  void crossover(void) 
  { 
  int i, mem, one; 
  int first = 0; /* count of the number of members chosen */ 
  double x; 
  for (mem = 0; mem   { 
  x = rand()%1000/1000.0; 
  if (x   { 
  ++first; 
  if (first % 2 == 0) 
  Xover(one, mem); 
  else 
  one = mem; 
  } 
  } 
  } 
  /**************************************************************/ 
  /* Crossover: performs crossover of the two selected parents. */ 
  /**************************************************************/ 
  void Xover(int one, int two) 
  { 
  int i; 
  int point; /* crossover point */ 
  /* select crossover point */ 
  if(NVARS >1) 
  { 
  if(NVARS == 2) 
  point = 1; 
  else 
  point = (rand() % (NVARS - 1)) + 1; 
  for (i = 0; i   swap(&population[one].gene[i], &population[two].gene[i]); 
  } 
  } 
  /*************************************************************/ 
  /* Swap: A swap procedure that helps in swapping 2 variables */ 
  /*************************************************************/ 
  void swap(double *x, double *y) 
  { 
  double temp; 
  temp = *x; 
  *x = *y; 
  *y = temp; 
  } 
  /**************************************************************/ 
  /* Mutation: Random uniform mutation. A variable selected for */ 
  /* mutation is replaced by a random value between lower and */ 
  /* upper bounds of this variable */ 
  /**************************************************************/ 
  void mutate(void) 
  { 
  int i, j; 
  double lbound, hbound; 
  double x; 
  for (i = 0; i   for (j = 0; j   { 
  x = rand()%1000/1000.0; 
  if (x   { 
  /* find the bounds on the variable to be mutated */ 
  lbound = population[i].lower[j]; 
  hbound = population[i].upper[j]; 
  population[i].gene[j] = randval(lbound, hbound); 
  } 
  } 
  } 
  /***************************************************************/ 
  /* Report function: Reports progress of the simulation. Data */ 
  /* dumped into the output file are separated by commas */ 
  /***************************************************************/ 
  void report(void) 
  { 
  int i; 
  double best_val; /* best population fitness */ 
  double avg; /* avg population fitness */ 
  double stddev; /* std. deviation of population fitness */ 
  double sum_square; /* sum of square for std. calc */ 
  double square_sum; /* square of sum for std. calc */ 
  double sum; /* total population fitness */ 
  sum = 0.0; 
  sum_square = 0.0; 
  for (i = 0; i   { 
  sum += population[i].fitness; 
  sum_square += population[i].fitness * population[i].fitness; 
  } 
  avg = sum/(double)POPSIZE; 
  square_sum = avg * avg * POPSIZE; 
  stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); 
  best_val = population[POPSIZE].fitness; 
  fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation, 
  best_val, avg, stddev); 
  } 
  /**************************************************************/ 
  /* Main function: Each generation involves selecting the best */ 
  /* members, performing crossover &mutation and then */ 
  /* evaluating the resulting population, until the terminating */ 
  /* condition is satisfied */ 
  /**************************************************************/ 
  void main(void) 
  { 
  int i; 
  if ((galog = fopen("galog.txt","w"))==NULL) 
  { 
  exit(1); 
  } 
  generation = 0; 
  fprintf(galog, "\n generation best average standard \n"); 
  fprintf(galog, " number value fitness deviation \n"); 
  initialize(); 
  evaluate(); 
  keep_the_best(); 
  while(generation  { 
  generation++; 
  select(); 
  crossover(); 
  mutate(); 
  report(); 
  evaluate(); 
  elitist(); 
  } 
  fprintf(galog,"\n\n Simulation completed\n"); 
  fprintf(galog,"\n Best member: \n"); 
  for (i = 0; i   { 
  fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); 
  } 
  fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); 
  fclose(galog); 
  printf("Success\n"); 
  本文链接网址

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -