⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chap6-3-1.htm.primary

📁 加密与解密,软件加密保护技术与解决方案,看雪文档!
💻 PRIMARY
📖 第 1 页 / 共 2 页
字号:
<html>
<head>
<title>Crack Tutorial</title>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<link rel="stylesheet" href="style/css.css" type="text/css">
<link rel="stylesheet" href="../STYLE/Css.css" type="text/css">
</head>

<body bgcolor="white" text="#000000" link="#004080" vlink="#004080" background="../image/Back.gif">
<p><a href="../catalog.htm">目录</a>>>第6章</p>
<p align="center" class="shadow1Copy"><b class="p3">第6章 软件保护技术</b></p>
<table width="80%" border="0" cellspacing="0" cellpadding="3" align="center" bgcolor="#bcbcbc" bordercolor="#111111" class="shadow1">
  <tr> 
    <td class="shadow1" width="25%"> 
      <div align="center"><a href="Chap6-1.htm"><font color="#FFFFFF">第一节 常见保护技巧</font></a></div>
    </td>
    <td class="shadow1" width="25%"> 
      <div align="center"><a href="Chap6-2.htm"><font color="#FFFFFF">第二节 反跟踪技术</font></a></div>
    </td>
    <td class="shadow1" width="25%"> 
      <div align="center"><a href="Chap6-3.htm"><font color="#FFFFFF">第三节 加密算法</font></a></div>
    </td>
    <td class="shadow1" width="25%"> 
      <div align="center"><a href="Chap6-4.htm"><font color="#FFFFFF">第四节 软件保护建议</font></a></div>
    </td>
  </tr>
</table>
<p align="center"><span class="p9"><b>第三节 加密算法</b></span></p>
<table border="1" width="80%" cellpadding="5" bordercolor="#111111" bgcolor="#efefef" align="center" cellspacing="0">
  <tr> 
    <td width="33%" valign="middle" align="center" class="p9" height="23"> 
      <div align="left" class="p"><span class="p9"><span class="p9">   <span class="p9">1、<a href="Chap6-3-1.htm">RSA算法</a></span></span></span></div>
    </td>
    <td width="33%" valign="middle" align="center" class="p9" height="23"> 
      <div align="left"><span class="p9"><span class="p9">   <span class="p9">2、<a href="Chap6-3-2.htm">DES算法</a></span></span></span></div>
    </td>
    <td width="34%" valign="top" class="p9" height="23"> 
      <div align="left"><span class="p9"><span class="p9">   <span class="p9">3、<a href="Chap6-3-3.htm">ElGamal算法</a></span></span></span></div>
    </td>
  </tr>
  <tr> 
    <td width="33%" valign="middle" align="center" class="p9" height="23"> 
      <div align="left"><span class="p9"><span class="p9">   <span class="p9">4、<a href="Chap6-3-4.htm">DSA算法</a></span></span></span></div>
    </td>
    <td width="33%" valign="middle" align="center" class="p9" height="23"> 
      <div align="left"><span class="p9"><span class="p9">   <span class="p9">5、<a href="Chap6-3-5.htm">MD5算法</a></span></span></span></div>
    </td>
    <td width="34%" valign="top" class="p9" height="23"> 
      <div align="left"><span class="p9"><span class="p9">   <span class="p9">6、<a href="Chap6-3-6.htm">BLOWFISH算法</a></span></span></span></div>
    </td>
  </tr>
</table>
<p align="center"><span class="p9"><span class="p9"><span class="p9"><b>1、RSA算法</b></span></span></span></p>
<p align="left" class="p9"><font color=#24bf71><font color="#000000">  它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron 
  Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。</font></font></p>
<p align="left" class="p9"><font color=#24bf71><font color="#000000"><span class="p9">一、RSA算法</span> 
  :</font></font></p>
<p align="left" class="p9"><font color=#24bf71><font color="#000000">首</font></font><font color="#000000">先,&nbsp;找出三个数,&nbsp;p,&nbsp;q,&nbsp;r,&nbsp;<br>
  其中&nbsp;p,&nbsp;q&nbsp;是两个相异的质数,&nbsp;r&nbsp;是与&nbsp;(p-1)(q-1)&nbsp;互质的数......&nbsp;<br>
  p,&nbsp;q,&nbsp;r&nbsp;这三个数便是&nbsp;private&nbsp;key&nbsp;<br>
  &nbsp;<br>
  接著,&nbsp;找出&nbsp;m,&nbsp;使得&nbsp;rm&nbsp;==&nbsp;1&nbsp;mod&nbsp;(p-1)(q-1).....&nbsp;<br>
  这个&nbsp;m&nbsp;一定存在,&nbsp;因为&nbsp;r&nbsp;与&nbsp;(p-1)(q-1)&nbsp;互质,&nbsp;用辗转相除法就可以得到了.....&nbsp;<br>
  再来,&nbsp;计算&nbsp;n&nbsp;=&nbsp;pq.......&nbsp;<br>
  m,&nbsp;n&nbsp;这两个数便是&nbsp;public&nbsp;key&nbsp;<br>
  &nbsp;<br>
  编码过程是,&nbsp;若资料为&nbsp;a,&nbsp;将其看成是一个大整数,&nbsp;假设&nbsp;a&nbsp;&lt;&nbsp;n....&nbsp;<br>
  如果&nbsp;a&nbsp;&gt;=&nbsp;n&nbsp;的话,&nbsp;就将&nbsp;a&nbsp;表成&nbsp;s&nbsp;进位&nbsp;(s&nbsp;&lt;=&nbsp;n,&nbsp;通常取&nbsp;s&nbsp;=&nbsp;2^t),&nbsp;<br>
  则每一位数均小於&nbsp;n,&nbsp;然後分段编码......&nbsp;<br>
  接下来,&nbsp;计算&nbsp;b&nbsp;==&nbsp;a^m&nbsp;mod&nbsp;n,&nbsp;(0&nbsp;&lt;=&nbsp;b&nbsp;&lt;&nbsp;n),&nbsp;<br>
  b&nbsp;就是编码後的资料......&nbsp;<br>
  &nbsp;<br>
  解码的过程是,&nbsp;计算&nbsp;c&nbsp;==&nbsp;b^r&nbsp;mod&nbsp;pq&nbsp;(0&nbsp;&lt;=&nbsp;c&nbsp;&lt;&nbsp;pq),&nbsp;<br>
  於是乎,&nbsp;解码完毕......&nbsp;等会会证明&nbsp;c&nbsp;和&nbsp;a&nbsp;其实是相等的&nbsp;&nbsp;:)&nbsp;<br>
  &nbsp;<br>
  如果第三者进行窃听时,&nbsp;他会得到几个数:&nbsp;m,&nbsp;n(=pq),&nbsp;b......&nbsp;<br>
  他如果要解码的话,&nbsp;必须想办法得到&nbsp;r......&nbsp;<br>
  所以,&nbsp;他必须先对&nbsp;n&nbsp;作质因数分解.........&nbsp;<br>
  要防止他分解,&nbsp;最有效的方法是找两个非常的大质数&nbsp;p,&nbsp;q,&nbsp;<br>
  使第三者作因数分解时发生困难.........&nbsp;<br>
  &nbsp;<br>
  &nbsp;<br>
  &lt;定理&gt;&nbsp;<br>
  若&nbsp;p,&nbsp;q&nbsp;是相异质数,&nbsp;rm&nbsp;==&nbsp;1&nbsp;mod&nbsp;(p-1)(q-1),&nbsp;<br>
  a&nbsp;是任意一个正整数,&nbsp;b&nbsp;==&nbsp;a^m&nbsp;mod&nbsp;pq,&nbsp;c&nbsp;==&nbsp;b^r&nbsp;mod&nbsp;pq,&nbsp;<br>
  则&nbsp;c&nbsp;==&nbsp;a&nbsp;mod&nbsp;pq&nbsp;<br>
  &nbsp;<br>
  证明的过程,&nbsp;会用到费马小定理,&nbsp;叙述如下:&nbsp;<br>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -