📄 svm_nu.cpp
字号:
// target_count=0; if(parameters->descend < old_target - new_target){ target_count=0; } else{ convError=1; }; if(parameters->verbosity>=5){ cout<<"descend = "<<old_target-new_target<<" ("<<old_target<<" --> "<<new_target<<")"<<endl; }; } else{ // nothing we can do KKTerror=0; convError=1; if(parameters->verbosity>=5){ cout<<"WARNING: no descend ("<<old_target<<" -> "<<new_target<<"), stopping"<<endl; }; }; if(convError){ target_count++; if(new_target>=old_target){ for(i=0;i<working_set_size;i++){ primal[i] = qp.A[i]*all_alphas[working_set[i]]; }; }; if(parameters->verbosity>=5){ cout<<"WARNING: Convergence error, setting sigfig = "<<sigfig_max<<endl; }; }; if(target_count>50){ // non-recoverable numerical error feasible_epsilon=1; convergence_epsilon*=2; if(parameters->verbosity>=1) cout<<"WARNING: reducing KKT precision to "<<convergence_epsilon<<endl; target_count=0; }; if(parameters->verbosity>=5){ cout<<"Resulting values:"<<endl; for(i=0;i<working_set_size;i++){ cout<<i<<": "<<primal[i]<<endl; }; }; time_optimize += get_time() - time_start;};void svm_nu_regression_c::print_special_statistics(){ // calculate tube size epsilon SVMFLOAT b = examples->get_b(); SVMFLOAT epsilon_pos = 0; SVMFLOAT epsilon_neg = 0; SVMINT pos_count = 0; SVMINT neg_count = 0; SVMINT i; for(i=0;i<examples_total;i++){ if((all_alphas[i] > is_zero) && (all_alphas[i]-Cpos<-is_zero)){ epsilon_neg += all_ys[i]-sum[i]-b; neg_count++; } else if((all_alphas[i] <- is_zero) && (all_alphas[i]+Cneg>+is_zero)){ epsilon_pos += -all_ys[i]+sum[i]+b; pos_count++; }; }; if((parameters->Lpos == parameters->Lneg) || (pos_count == 0) || (neg_count == 0)){ // symmetrical epsilon_pos += epsilon_neg; pos_count += neg_count; if(pos_count>0){ epsilon_pos /= (SVMINT)pos_count; cout<<"epsilon = "<<epsilon_pos<<endl; } else{ cout<<"ERROR: could not calculate epsilon."<<endl; cout<<pos_count<<"\t"<<neg_count<<endl; // @@@@@@@ }; } else{ // asymmetrical epsilon_pos /= (SVMINT)pos_count; cout<<"epsilon+ = "<<epsilon_pos<<endl; epsilon_neg /= (SVMINT)neg_count; cout<<"epsilon- = "<<epsilon_pos<<endl; };};/** * * svm_nu_pattern_c * **/SVMFLOAT svm_nu_pattern_c::nabla(const SVMINT i){ if(all_ys[i] > 0){ return( sum[i]); } else{ return(-sum[i]); };};void svm_nu_pattern_c::init(kernel_c* new_kernel, parameters_c* new_parameters){ new_parameters->realC = 1; svm_nu_regression_c::init(new_kernel,new_parameters);};void svm_nu_pattern_c::init_optimizer(){ // Cs are dived by examples_total in init_optimizer svm_nu_regression_c::init_optimizer(); SVMINT i; for(i=0;i<working_set_size;i++){ qp.l[i] = 0; };};void svm_nu_pattern_c::update_working_set(){ svm_c::update_working_set(); SVMINT i; for(i=0;i<working_set_size;i++){ if(qp.A[i]>0){ qp.c[i] += all_ys[working_set[i]]; } else{ qp.c[i] -= all_ys[working_set[i]]; }; };};void svm_nu_pattern_c::init_working_set(){ // calculate nu-sum if(examples->initialised_alpha()){ project_to_constraint(); }; sum_alpha_nu=0; SVMFLOAT the_nu_sum = 0; SVMFLOAT the_sum=0; SVMINT pos_count=0; SVMINT neg_count=0; SVMINT ni; for(ni=0;ni<examples_total;ni++){ the_sum += all_alphas[ni]; the_nu_sum += abs(all_alphas[ni]); if(is_alpha_neg(ni)> 0){ neg_count++; } else{ pos_count++; }; }; if((abs(the_sum) > is_zero) || (abs(the_nu_sum-nu) > is_zero)){ // set initial feasible point // neg alpha: -nu/2n // pos alpha: nu/2p if((nu*(SVMFLOAT)examples_total>2*(SVMFLOAT)pos_count) || (nu*(SVMFLOAT)examples_total>2*(SVMFLOAT)neg_count)){ nu = 2*((SVMFLOAT)pos_count)/((SVMFLOAT)examples_total); if(nu > 2*((SVMFLOAT)neg_count)/((SVMFLOAT)examples_total)){ nu = 2*((SVMFLOAT)neg_count)/((SVMFLOAT)examples_total); }; nu -= is_zero; // just to make sure cout<<"ERROR: nu too large, setting nu = "<<nu<<endl; }; for(ni=0;ni<examples_total;ni++){ if(is_alpha_neg(ni)> 0){ examples->put_alpha(ni,nu/(2*(SVMFLOAT)neg_count)); } else{ examples->put_alpha(ni,-nu/(2*(SVMFLOAT)pos_count)); }; }; examples->set_initialised_alpha(); }; svm_c::init_working_set();};void svm_nu_pattern_c::print_special_statistics(){ // calculate margin rho SVMFLOAT b = examples->get_b(); SVMFLOAT rho_pos = 0; SVMFLOAT rho_neg = 0; SVMINT pos_count = 0; SVMINT neg_count = 0; SVMINT i; for(i=0;i<examples_total;i++){ if((all_alphas[i] > is_zero) && (all_alphas[i]-Cpos<-is_zero)){ rho_neg += sum[i]+b; neg_count++; } else if((all_alphas[i] <- is_zero) && (all_alphas[i]+Cneg>+is_zero)){ rho_pos += -sum[i]-b; pos_count++; }; }; if((parameters->Lpos == parameters->Lneg) || (pos_count == 0) || (neg_count == 0)){ // symmetrical rho_pos += rho_neg; pos_count += neg_count; if(pos_count>0){ rho_pos /= (SVMINT)pos_count; cout<<"margin = "<<rho_pos<<endl; } else{ cout<<"ERROR: could not calculate margin."<<endl; }; } else{ // asymmetrical rho_pos /= (SVMINT)pos_count; cout<<"margin+ = "<<rho_pos<<endl; rho_neg /= (SVMINT)neg_count; cout<<"margin- = "<<rho_pos<<endl; };};/** * * svm_distribution_c * **/int svm_distribution_c::is_alpha_neg(const SVMINT i){ // variable i is alpha* return 1;};SVMFLOAT svm_distribution_c::nabla(const SVMINT i){ return( sum[i]);};SVMFLOAT svm_distribution_c::lambda(const SVMINT i){ // size lagrangian multiplier of the active constraint SVMFLOAT alpha; SVMFLOAT result = 0; alpha=all_alphas[i]; if(alpha>is_zero){ // alpha* if(alpha-Cneg >= - is_zero){ // upper bound active result = -lambda_eq-sum[i]; } else{ result = -abs(sum[i]+lambda_eq); }; } else{ // lower bound active result = sum[i] + lambda_eq; }; return result;};int svm_distribution_c::feasible(const SVMINT i){ // is direction i feasible to minimize the target function // (includes which_alpha==0) if(at_bound[i] >= shrink_const){ return 0; }; SVMFLOAT alpha; SVMFLOAT result; alpha=all_alphas[i]; if(alpha-Cneg >= - is_zero){ // alpha* at upper bound result = -lambda_eq - sum[i]; if(result>=-feasible_epsilon){ return 0; }; } else if(alpha<=is_zero){ // lower bound active result = sum[i]+lambda_eq; if(result>=-feasible_epsilon){ return 0; }; } else{ // not at bound result= abs(sum[i]+lambda_eq); if(result<=feasible_epsilon){ return 0; }; }; return 1;};int svm_distribution_c::feasible(const SVMINT i, SVMFLOAT* the_nabla, SVMFLOAT* the_lambda, int* atbound){ // is direction i feasible to minimize the target function // (includes which_alpha==0) int is_feasible=1; if(at_bound[i] >= shrink_const){ is_feasible = 0; }; SVMFLOAT alpha; alpha=all_alphas[i]; *the_nabla = sum[i]; if(alpha >= Cneg){ //alpha-Cneg >= - is_zero){ // alpha* at upper bound *atbound = 1; *the_lambda = -lambda_eq - *the_nabla; //sum[i] + 1; if(*the_lambda >= 0){ at_bound[i]++; if(at_bound[i] == shrink_const) to_shrink++; } else{ at_bound[i] = 0; }; } else if(alpha <= 0){ // lower bound active *atbound = -1; *the_lambda = lambda_eq + *the_nabla; //sum[i] + 1; if(*the_lambda >= 0){ at_bound[i]++; if(at_bound[i] == shrink_const) to_shrink++; } else{ at_bound[i] = 0; }; } else{ // not at bound *atbound = 0; *the_lambda = -abs(*the_nabla+lambda_eq); at_bound[i] = 0; }; if(*the_lambda >= feasible_epsilon){ is_feasible = 0; }; return is_feasible;};void svm_distribution_c::init(kernel_c* new_kernel, parameters_c* new_parameters){ new_parameters->realC = 1; nu = new_parameters->nu; convergence_epsilon = 1e-4; svm_pattern_c::init(new_kernel,new_parameters); // is_pattern = 1;};void svm_distribution_c::init_optimizer(){ // Cs are dived by examples_total in init_optimizer svm_pattern_c::init_optimizer();};void svm_distribution_c::project_to_constraint(){ SVMINT total = 0; SVMFLOAT alpha_sum=sum_alpha-nu; SVMFLOAT alpha=0; SVMINT i; for(i=0;i<examples_total;i++){ alpha = all_alphas[i]; alpha_sum += alpha; if((alpha>is_zero) && (alpha-Cneg < -is_zero)){ total++; }; }; if(total>0){ // equality constraint violated alpha_sum /= (SVMFLOAT)total; for(i=0;i<examples_total;i++){ if((alpha>is_zero) && (alpha-Cneg < -is_zero)){ all_alphas[i] -= alpha_sum; }; }; };};int svm_distribution_c::convergence(){ long time_start = get_time(); SVMFLOAT the_lambda_eq = 0; SVMINT total = 0; SVMFLOAT alpha_sum=0; SVMFLOAT alpha=0; SVMINT i; int result=1; // actual convergence-test total = 0; alpha_sum=0; // cout<<Cneg<<"\t"<<nu<<"\t"<<all_alphas[0]<<endl; for(i=0;i<examples_total;i++){ alpha = all_alphas[i]; alpha_sum += alpha; if((alpha>is_zero) && (alpha-Cneg < -is_zero)){ // alpha^* = - nabla the_lambda_eq += -sum[i]; total++; }; }; if(parameters->verbosity>= 4){ cout<<"lambda_eq = "<<(the_lambda_eq/total)<<endl; }; if(total>0){ lambda_eq = the_lambda_eq / total; } else{ // keep WS lambda_eq lambda_eq = lambda_WS; if(parameters->verbosity>= 4){ cout<<"*** no SVs in convergence(), lambda_eq = "<<lambda_eq<<"."<<endl; }; }; if(target_count>2){ if(target_count>20){ // desperate! lambda_eq = ((40-target_count)*lambda_eq + (target_count-20)*lambda_WS)/20; if(parameters->verbosity>=5){ cout<<"Re-Re-calculated lambda from WS: "<<lambda_eq<<endl; }; if(target_count>40){ // really desperate, kick one example out! i = working_set[target_count%working_set_size]; lambda_eq = -sum[i]; if(parameters->verbosity>=5){ cout<<"set lambda_eq to nabla("<<i<<"): "<<lambda_eq<<endl; }; }; } else{ lambda_eq = lambda_WS; if(parameters->verbosity>=5){ cout<<"Re-calculated lambda_eq from WS: "<<lambda_eq<<endl; }; }; }; // check linear constraint if(abs(alpha_sum+sum_alpha-nu) > convergence_epsilon){ // equality constraint violated if(parameters->verbosity>= 4){ cout<<"No convergence: equality constraint violated: |"<<(alpha_sum+sum_alpha)<<"| >> 0"<<endl; }; project_to_constraint(); result = 0; }; i=0; while((i<examples_total) && (result != 0)){ if(lambda(i)>=-convergence_epsilon){ i++; } else{ result = 0; }; }; time_convergence += get_time() - time_start; return result;};void svm_distribution_c::init_working_set(){ // calculate sum SVMINT i,j; if(nu>1){ cout<<"ERROR: nu too large, setting nu to 1"<<endl; nu = 1-is_zero; }; SVMFLOAT the_sum=0; for(i=0; i<examples_total;i++){ the_sum += all_alphas[i]; }; if(abs(the_sum-nu) > is_zero){ for(i=0; i<examples_total;i++){ examples->put_alpha(i,nu/((SVMFLOAT)examples_total)); }; examples->set_initialised_alpha(); }; if(parameters->verbosity >= 3){ cout<<"Initialising variables, this may take some time."<<endl; }; for(i=0; i<examples_total;i++){ all_ys[i] = 1; sum[i] = 0; at_bound[i] = 0; for(j=0; j<examples_total;j++){ sum[i] += all_alphas[j]*kernel->calculate_K(i,j); }; }; calculate_working_set(); update_working_set();};void svm_distribution_c::print_special_statistics(){ // calculate margin rho SVMFLOAT rho = 0; SVMINT count = 0; SVMFLOAT norm_x; SVMFLOAT max_norm_x=-infinity; // SVMFLOAT xi_i; // SVMINT estim_loo=examples_total; // SVMINT estim_loo2=examples_total; SVMINT svs=0; SVMINT i; for(i=0;i<examples_total;i++){ if((all_alphas[i] > is_zero) && (all_alphas[i]-Cpos<-is_zero)){ rho += sum[i]; count++; }; if(all_alphas[i] != 0){ svs++; norm_x = kernel->calculate_K(i,i); if(norm_x>max_norm_x){ max_norm_x = norm_x; }; }; }; if(count == 0){ cout<<"ERROR: could not calculate margin."<<endl; } else{ // put -rho as b (same decision function) rho /= (SVMINT)count; examples->put_b(-rho); cout<<"margin = "<<rho<<endl; }; cout<<"examples in distribution support : "<<count<<" ("<<((SVMINT)(10000.0*(SVMFLOAT)count/((SVMFLOAT)examples_total)))/100.0<<"%)."<<endl;};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -