⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mfrc500uc.c

📁 RC500程序原码,适合做RF射频开发,RC500读卡器
💻 C
📖 第 1 页 / 共 3 页
字号:
///////////////////////////////////////////////////////////////////////////////
//    Copyright (c), Philips Semiconductors Gratkorn
//
//                  (C)PHILIPS Electronics N.V.2000
//                     All rights are reserved. 
//  Philips reserves the right to make changes without notice at any time.
// Philips makes no warranty, expressed, implied or statutory, including but
// not limited to any implied warranty of merchantibility or fitness for any
//particular purpose, or that the use will not infringe any third party patent,
// copyright or trademark. Philips must not be liable for any loss or damage
//                          arising from its use.
///////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <stdio.h>

#include <RICReg.h>

#include <MfRc500.h>
#include <PcdShared.h>
#include <uCInit.h>
#include <RcCommunication.h>
#include <PcdUtils.h>
#include <MfErrNo.h>

/*! \file MfRc500uC.c
*
* Projekt: MF EV X00 Firmware
*
* $Workfile:: MfRc500uC.c                                               $ 
* $Modtime:: 30.03.01 9:46                                              $ 
* $Author:: Hb                                                          $
* $Revision:: 31                                                        $
*
* 
* This library modul is written for a C166 microcontroller derivative.
* The source can be ported to other platforms very easily. 
* The communication channel to the RC500 reader IC is assumed to be 
* unknown. All data is written with the generic IO functions 
* of the module RcComunication.h (Reader core communication). 
* In our case the reader module is 
* connected via memory mapped io at base address 0x100000.
* The interrupt pin of the reader IC is assumed to be connected to 
* the fast external interrupt pin INT0# (active low) and the reset
* pin of the reader IC should be connected to a dedicated port pin
* (Port: P1 Pin: 9).
* In this configuration, a reset of the reader module is independend
* from the reset of the microcontroller.
* In order to generate communication timeouts, 
* general purpose timer 3 of the microcontroller is used. This 
* timer need not to be initialised in advance. Before every usage 
* the timer is completely initialised in each function. 
* Non of the timers is essential for the functionality of the reader
* module, but are helpful furing software development. All protocoll 
* relevant timing constraints are generated
* by the internal timer of the reader module.
* 
* Some explanations to the programming method of this library.
* There are three kind of functions coded in this module.
* <ol>
*  <li> internal functions, which have no prototypes in a header
*       file. This kind of functions are not intended to be used 
*       outside of this file
*  <li> commands, which are intended for the reader module itself
*  <li> commands, which are intended for any tag in the rf field.
*       These commands are send to the reader and the reader module
*       transmitts the data to the rf interface.
* </ol>
* Commands for the reader and for the tag have the appropriate 
* prefix (PCD for Proximity Coupled Device or reader module
* PICC for Proximity Integrated Circuit Card or tag)
* and their protypes are defined in the header file.
* Certainly, each command for a PICC consists of an instruction to the PCD. 
* Therefore
* the function PcdSingleResponseCmd is very important for the understanding
* of the communication.
* 
* The basic functionality is provided by the interrupt service
* routine (SingleResponseCmd), which closely works together with the function
* PcdSingleResponseCmd. All kinds of interrupts are serviced by the 
* same ISR. 
*/

///////////////////////////////////////////////////////////////////////////////
//             M O D U L   V A R I A B L E S 
///////////////////////////////////////////////////////////////////////////////

/*!
* \ingroup mfcompatible
* storage of the last selected serial number including check byte.
*
* For multi level serial numbers, only the first 4 bytes are stored.
*/
unsigned char MLastSelectedSnr[5];

volatile unsigned char *MSndBuffer = 0; ///< pointer to the transmit buffer
volatile unsigned char *MRcvBuffer = 0; ///< pointer to the receive buffer

/*!
* In order to exchange some values between the ISR and the calling function,
* a struct is provided. 
*/
volatile MfCmdInfo     MInfo;                  

/*! \name ISO14443 Support Properties
* \ingroup ISO14443
* Some of the protokoll functions of ISO14443 needs information about
* the capability of the reader device, which are provided by this
* constants.
*/
//@{
#define TCLFSDSNDMAX   8   ///< max. frame size send
#define TCLFSDRECMAX   8   ///< max. frame size rcv
#define TCLDSMAX       3   ///< max. baudrate divider PICC --> PCD
#define TCLDRMAX       3   ///< max. baudrate divider PCD --> PICC

#define TCLDSDFLT      0   ///< default baudrate divider PICC --> PCD
#define TCLDRDFLT      0   ///< default baudrate divider PCD --> PICC
//@}


///////////////////////////////////////////////////////////////////////////////
//             Prototypes for local functions 
///////////////////////////////////////////////////////////////////////////////

///  Internal Authentication State Switch
/*!
* \ingroup internal
* \param auth_mode (<em>IN</em>) 
*                  <ul> selects master key A or master key B 
*                   <li> PICC_AUTHENT1A
*                   <li> PICC_AUTHENT1B 
*                  </ul>
* \param *snr      (<em>IN</em>) 
*                  4 byte serial number of the card, which should be 
*                  authenticated
* \param sector (<em>IN</em>) Range [0..15] 
*               specifies the key RAM address 
*               from which the keys should be taken
* \return <ul>
*          <li> MI_OK
*          <li> CCE
*          <li> MI_BITCOUNTERR  wrong number of bits received
*          <li> MI_AUTHERR      wrong keys for selected card
*          <li> MI_KEYERR       error while loading keys
*         </ul>
* 
* Internal authentication state function.
*/
char Mf500PiccAuthState(unsigned char auth_mode,// PICC_AUTHENT1A, PICC_AUTHENT1B
                       unsigned char *snr,    // 4 byte serial number
                       unsigned char sector); // 0 <= sector <= 15  
                                            // sector address for authentication

///////////////////////////////////////////////////////////////////////
//      M I F A R E   M O D U L E   C O N F I G U R A T I O N
///////////////////////////////////////////////////////////////////////
char Mf500PcdConfig(void)
{
   char status = MI_RESETERR;
   unsigned short RstLoopCnt = 0;
   unsigned short CmdWaitCnt = 0;
      
   // global initialisation
   MSndBuffer  = RicRxTxBuffer;  // initialise send buffer 
   MRcvBuffer  = RicRxTxBuffer;  // initialise receive buffer

   status = PcdReset();

   if (status == MI_OK)
   {

     // test clock Q calibration - value in the range of 0x46 expected
     WriteRC(RegClockQControl,0x0);
     WriteRC(RegClockQControl,0x40);
     SleepUs(24);  // wait approximately 100 us - calibration in progress
     ClearBitMask(RegClockQControl,0x40); // clear bit ClkQCalib for 
                                          // further calibration

     // The following values for RegBitPhase and
     // RegRxThreshold represents an optimal
     // value for our demo package. For user
     // implementation some changes could be
     // necessary
     // initialize bit phase
     WriteRC(RegBitPhase,0xAD);      

     // initialize minlevel
     WriteRC(RegRxThreshold,0xFF);   
  
     // disable auto power down
     WriteRC(RegRxControl2,01);

     // Depending on the processing speed of the
     // operation environment, the waterlevel 
     // can be adapted. (not very critical for
     // mifare applications)
     // initialize waterlevel to value 4
     WriteRC(RegFIFOLevel,0x1A); // initialize to 26d 
     
     //Timer Konfiguration
     WriteRC(RegTimerControl,0x02);  // TStopRxEnd=0,TStopRxBeg=0,
                                   // TStartTxEnd=1,TStartTxBeg=0  
                                   // timer must be stopped manually

     WriteRC(RegIRqPinConfig,0x3); // interrupt active low enable

     PcdRfReset(1);            // Rf - reset and enable output driver   

   }
   return status;
}

///////////////////////////////////////////////////////////////////////
//          M I F A R E   R E M O T E   A N T E N N A
//  Configuration of slave module
///////////////////////////////////////////////////////////////////////
char Mf500ActiveAntennaSlaveConfig(void)
{
   char status = MI_OK;

   FlushFIFO();    // empty FIFO
   ResetInfo(MInfo);   
   MSndBuffer[0] = 0x10; // addr low byte
   MSndBuffer[1] = 0x00; // addr high byte

   MSndBuffer[2] = 0x00; // Page
   MSndBuffer[3] = 0x7B; // RegTxControl modsource 11,InvTx2,Tx2RFEn,TX1RFEn
   MSndBuffer[4] = 0x3F; // RegCwConductance
   MSndBuffer[5] = 0x3F; // RFU13
   MSndBuffer[6] = 0x19; // RFU14
   MSndBuffer[7] = 0x13; // RegModWidth     
   MSndBuffer[8] = 0x00; // RFU16
   MSndBuffer[9] = 0x00; // RFU17
 
   MSndBuffer[10] = 0x00; // Page
   MSndBuffer[11] = 0x73; // RegRxControl1 
   MSndBuffer[12] = 0x08; // RegDecoderControl
   MSndBuffer[13] = 0x6c; // RegBitPhase     
   MSndBuffer[14] = 0xFF; // RegRxThreshold  
   MSndBuffer[15] = 0x00; // RFU1D
   MSndBuffer[16] = 0x00; // RegRxControl2   
   MSndBuffer[17] = 0x00; // RegClockQControl

   MSndBuffer[18] = 0x00; // Page
   MSndBuffer[19] = 0x06; // RegRxWait
   MSndBuffer[20] = 0x03; // RegChannelRedundancy
   MSndBuffer[21] = 0x63; // RegCRCPresetLSB    
   MSndBuffer[22] = 0x63; // RegCRCPresetMSB    
   MSndBuffer[23] = 0x0;  // RFU25
   MSndBuffer[24] = 0x04; // RegMfOutSelect enable mfout = manchester HT
   MSndBuffer[25] = 0x00; // RFU27
     
   // PAGE 5      FIFO, Timer and IRQ-Pin Configuration
   MSndBuffer[26] = 0x00; // Page
   MSndBuffer[27] = 0x08; // RegFIFOLevel       
   MSndBuffer[28] = 0x07; // RegTimerClock      
   MSndBuffer[29] = 0x06; // RegTimerControl    
   MSndBuffer[30] = 0x0A; // RegTimerReload     
   MSndBuffer[31] = 0x02; // RegIRqPinConfig    
   MSndBuffer[32] = 0x00; // RFU    
   MSndBuffer[33] = 0x00; // RFU
   MInfo.nBytesToSend   = 34;
         
   status = PcdSingleResponseCmd(PCD_WRITEE2,
                   MSndBuffer,
                   MRcvBuffer,
                   &MInfo); // write e2
   return status;
}

///////////////////////////////////////////////////////////////////////
//          M I F A R E   R E M O T E   A N T E N N A
//  Configuration of master module
///////////////////////////////////////////////////////////////////////
char Mf500ActiveAntennaMasterConfig(void)
{
   char status = MI_OK;

   WriteRC(RegRxControl2,0x42);
   WriteRC(RegTxControl,0x10);
   WriteRC(RegBitPhase,0x11);

   return status;
}     
                  
///////////////////////////////////////////////////////////////////////
//          M I F A R E    R E Q U E S T 
///////////////////////////////////////////////////////////////////////
char Mf500PiccRequest(unsigned char req_code, // request code ALL = 0x52 
                                           // or IDLE = 0x26 
                   unsigned char *atq)     // answer to request
{
  return Mf500PiccCommonRequest(req_code,atq);
}

///////////////////////////////////////////////////////////////////////
//          M I F A R E   C O M M O N   R E Q U E S T 
///////////////////////////////////////////////////////////////////////
char Mf500PiccCommonRequest(unsigned char req_code, 
                         unsigned char *atq)
{
   char status = MI_OK;

    //************* initialize ******************************
   if ((status = Mf500PcdSetDefaultAttrib()) == MI_OK)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -