📄 rfc1863.txt
字号:
BGP-4/IDRP specification, the RS clients would not be able to associate external routes they receive with the border routers which submitted that routes to route servers. Such an association is necessary for making a correct route selection decision. Therefore, the new path attribute, ADVERTISER, is defined. The ADVERTISER is an optional non-transitive attribute that defines the identifying address of the border router which originally submitted the route to a router server in order for it to be relayed to other RS clients. Type Code of the ADVERTISER attribute is 255. This attribute must be included in every UPDATE message that is relayed by route servers and must be recognized by RS clients.4.2 Route Client Operation An RS client establishes an BGP/IDRP connection to every route server in the RS cluster to which the route client is assigned. RS clients must be able to recognize the ADVERTISER path attribute that is included in all UPDATE messages received from route servers. Routes received in UPDATE messages from route servers are processed as if they were received directly from the border routers specified in the ADVERTISER attributes of the respective updates. If an RS client receives a route from a Intra-Domain Route Server, is assumed that the border router identified in the ADVERTISER attribute is located in the receiving client's own routing domain. If an RS client receives a route from a Inter-Domain Route Server, the locality of the border router identified in the ADVERTISER attribute can be determined from the BGP's AS_PATH attribute or IDRP's RD_PATH attribute respectively.Haskin Experimental [Page 6]RFC 1863 A BGP/IDRP Route Server October 1995 If no ADVERTISER attribute was included in an UPDATE message from a route server it is assumed that the route server itself is the advertiser of the corresponding route. If the NEXT_HOP path attribute of an UPDATE message lists an address of the receiving router itself, the route that is carried in such an update message must be declared unreachable. In addition, it is highly desirable, albeit not required, to slightly modify the "standard" BGP/IDRP operation when acquiring routes from RSs: when a route is received from an RS and a route with the completely identical attributes has been previously acquired from another RS in the same cluster, the previously acquired route should be replaced with the newly acquired route. Such a route replacement should not trigger any route advertisement action on behalf of the route. RSs are designed to operate in such a way that eliminates the need to keep multiple copies of the same route by RS clients and minimizes the possibility of a route flap when the BGP/IDRP connection to one of the redundant route servers is lost. It is attempted to subdivide the route dissemination load between route servers such that only one RS provides routing updates to a given client. But since, for avoiding an excessive complexity, the reconciliation algorithm does not eliminate completely the possibility of races, it is still possible that a client may receive updates from more than one route server. Therefore, the client's ability to discard duplicate routes may reduce the need for a bigger routing database.4.3 Route Server Operation A Route Server maintains BGP-4/IDRP sessions with its clients according to the respective BGP-4/IDRP specification with exception of protocol modifications outlined in this document. UPDATE messages sent by route servers have the same format and semantics as it respective BGP-4/IDRP counterparts but also carry the ADVERTISER path attribute which specifies the BGP Identifier of the border router that submitted the route advertised in the UPDATE message. In addition, if the hierarchical model is deployed to interconnect Route Server clusters, it is advisable to include the "RCID Path" attribute in all routing updates sent between route servers as described in 4.3.4.Haskin Experimental [Page 7]RFC 1863 A BGP/IDRP Route Server October 1995 When route servers exchange OPEN messages they include the Route Server protocol version (current version is 1) as well as Cluster IDs of their respective clusters in an Optional Parameter of the OPEN message. The value of Parameter Type for this parameter is 255. The length of the parameter data is 3 octets. The format of parameter data is shown below: +-----------------------+------------------------------------+ | Version = 1 (1 octet) | Cluster ID (2 octets) | +-----------------------+------------------------------------+ Also, route servers that belong to the same cluster send to each other LIST messages with lists of clients to which they're providing routing information. In the LIST message an RS specifies the Router Identifier of each client to which that RS is providing routing updates. Since LIST messages are relatively small there is no need to add a processing complexity of generating incremental updates when a list changes; instead the complete list is sent when RSs need to be informed of the changes. The format of the LIST message is presented in 4.3.1.4.3.1 LIST Message Format The LIST message contains the fixed BGP/IDRP header that is followed with the fields shown below. The type code in the fixed header of the LIST message is 255. +----------+----------+----------+----------+ | Client Identifying Address | Repeated for each +-------------------------------------------+ informed client The number of Client Identifying Address" fields is not encoded explicitly, but can be calculated as: (<LIST message Length> - <Header Length>) / <Address Length>, where <LIST message Length> is the value encoded in the fixed BGP/IDRP header, <Header Length> is the length of that header, and <Address Length> is 4 for IPv4 and 16 for IPv6.4.3.2 External Route Acquisition And Advertisement A route server acquires external routes from RS clients that are also border routers. A RS also may acquire external routes from other RSs. Route servers relay all acquired routes unaltered to their clients. No route selection is performed for purpose of route re- advertisement to RS clients.Haskin Experimental [Page 8]RFC 1863 A BGP/IDRP Route Server October 1995 While route servers receive and store routing data from all their client, Routing Servers in the same cluster coordinate their route advertisement in the attempt to ensure that only one RS provides routing updates to a given client. If an RS fails, other Route Servers in the cluster take over the responsibility of providing routing updates to the clients that were previously served by the failed RS. A route flap that can result from such switch-over can be eliminated by the configuring client's "Hold Time" of their BGP- 4/IDRP sessions with the route servers to be larger than the switch- over time. The switch-over time is determined by the Hold Time of BGP-4/IDRP sessions between the route servers in the cluster and the period that is needed for that route servers to reconcile their route advertisement responsibilities. The reconciliation protocol is described in 4.3.3. The BGP-4/IDRP operations of route servers differs from the "standard" operation in the following ways: - when receiving routes from another RS, the RS Client mode of operation is assumed, i.e., when a route with completely identical attributes has been previously acquired from an RS belonging to the same cluster as the RS that advertises the new route, the previously acquired route should be discarded and the newly acquired route should be accepted. Such a route replacement should not trigger any route advertisement action on behalf of the route. - all acquired routes are advertised to a client router except routes which were acquired from that client (no route echoing); - if the hierarchical model of inter-cluster route exchange is used, all acquired routes are advertised to an RS in another RSC except routes that are acquired from that RSC. In the full-mesh model, only routes which are acquired from border routers are advertised to route servers in other clusters; - if route servers in the same RS cluster are configured to exchange routing information, only external routes that are acquired from border routers are advertised to route servers in the local cluster; - the ADVERTISER path attribute is included in every UPDATE messages that is generated by RS. This attribute must specify the identifying address of the border router from which information provided in UPDATE has been acquired. All other routing attributes should be relayed to RS's peers unaltered.Haskin Experimental [Page 9]RFC 1863 A BGP/IDRP Route Server October 1995 - when a route advertised by to an RS by a client becomes unreachable such a route needs to be declared unreachable to all other clients. In order to withdraw a route, the route server sends an UPDATE for that route to each client (except the client that this route was originally acquired) with the NEXT_HOP path attribute set to the address of the client to which this UPDATE is sent to. The the ADVERTISER path attribute with the identifying address of the border router that originally advertised the withdrawn route must be also included in such an update message. - if the hierarchical model is deployed to interconnect Route Server clusters, it is advisable to include the RCID_PATH attribute in all routing updates sent between route servers as described in 4.3.4. The RCID_PATH attribute is never included in UPDATE messages sent to border routers.4.3.3 Intra-Cluster Coordination In order to coordinate route advertisement activities, route servers which are members of the same RS cluster establish and maintain BGP/IDRP connections between themselves forming a full-mesh connectivity. Normally, there is no need for more than two-three route servers in one cluster. Route servers belonging to the same cluster send to each other LIST messages with lists of clients to which they're providing routing information; let's call such clients "informed clients". Each RS maintains a separate "informed client" list for each RS in the local cluster including itself. All such lists are linked in an ascending order that is determined by the number of clients in each list; the order among the lists with the same number of clients is determined by comparing the identifying addresses of the corresponding RSs -- an RS in such a "same number of clients" subset is positioned after all RSs with the lower address. An RS can be in one of two RS coordination states: 'Initiation' and 'Active'.4.3.3.1 Initiation State This is the initial state of route server that is entered upon RS startup. When the Initiation state is entered the 'InitiationTimer' is started. The Initiation state transits to the Active state upon expiration of the 'InitiationTimer' or as soon as all configured BGP/IDRP connections to other route servers in the local RS Cluster are established and LIST messages from that route servers areHaskin Experimental [Page 10]RFC 1863 A BGP/IDRP Route Server October 1995 received. In the Initiation state an RS: o tries to establish connections with other RSs in the local and remote clusters. o accepts BGP/IDRP connections from client routers. o receives and process BGP/IDRP updates but doesn't send any routing updates. o stores "informed client" lists received from other RSs in the local cluster - a newly received list replaces the existing list for the same RS. If a LIST message is received from the route server in another RS cluster, it should be silently ignored. o initializes an empty "informed client" list for its own clients. o as soon as a BGP/IDRP connection to an RS in the same RS Cluster is established, transmits an empty LIST message to such an RS.4.3.3.2 Active StateThis state is entered upon expiration of the 'InitiationTimer' or assoon as all configured BGP/IDRP connections to other route servers inthe local RS Cluster are established and LIST messages from that routeservers are received.In the Active state an RS: o continues attempts to establish connections with other route servers in the local and remote clusters; o accepts new BGP/IDRP connections;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -