📄 rfc2796.txt
字号:
Network Working Group T. BatesRequest for Comments: 2796 Cisco SystemsUpdates: 1966 R. ChandraCategory: Standards Track E. Chen Redback Networks April 2000 BGP Route Reflection - An Alternative to Full Mesh IBGPStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract The Border Gateway Protocol [1] is an inter-autonomous system routing protocol designed for TCP/IP internets. Currently in the Internet BGP deployments are configured such that that all BGP speakers within a single AS must be fully meshed so that any external routing information must be re-distributed to all other routers within that AS. This represents a serious scaling problem that has been well documented with several alternatives proposed [2,3]. This document describes the use and design of a method known as "Route Reflection" to alleviate the the need for "full mesh" IBGP.1. Introduction Currently in the Internet, BGP deployments are configured such that that all BGP speakers within a single AS must be fully meshed and any external routing information must be re-distributed to all other routers within that AS. For n BGP speakers within an AS that requires to maintain n*(n-1)/2 unique IBGP sessions. This "full mesh" requirement clearly does not scale when there are a large number of IBGP speakers each exchanging a large volume of routing information, as is common in many of todays internet networks.Bates, et al. Standards Track [Page 1]RFC 2796 BGP Route Reflection April 2000 This scaling problem has been well documented and a number of proposals have been made to alleviate this [2,3]. This document represents another alternative in alleviating the need for a "full mesh" and is known as "Route Reflection". This approach allows a BGP speaker (known as "Route Reflector") to advertise IBGP learned routes to certain IBGP peers. It represents a change in the commonly understood concept of IBGP, and the addition of two new optional transitive BGP attributes to prevent loops in routing updates. This document is a revision of RFC1966 [4], and it includes editorial changes, clarifications and corrections based on the deployment experience with route reflection. These revisions are summarized in the Appendix.2. Design Criteria Route Reflection was designed to satisfy the following criteria. o Simplicity Any alternative must be both simple to configure as well as understand. o Easy Transition It must be possible to transition from a full mesh configuration without the need to change either topology or AS. This is an unfortunate management overhead of the technique proposed in [3]. o Compatibility It must be possible for non compliant IBGP peers to continue be part of the original AS or domain without any loss of BGP routing information. These criteria were motivated by operational experiences of a very large and topology rich network with many external connections.3. Route Reflection The basic idea of Route Reflection is very simple. Let us consider the simple example depicted in Figure 1 below.Bates, et al. Standards Track [Page 2]RFC 2796 BGP Route Reflection April 2000 +-------+ +-------+ | | IBGP | | | RTR-A |--------| RTR-B | | | | | +-------+ +-------+ \ / IBGP \ ASX / IBGP \ / +-------+ | | | RTR-C | | | +-------+ Figure 1: Full Mesh IBGP In ASX there are three IBGP speakers (routers RTR-A, RTR-B and RTR- C). With the existing BGP model, if RTR-A receives an external route and it is selected as the best path it must advertise the external route to both RTR-B and RTR-C. RTR-B and RTR-C (as IBGP speakers) will not re-advertise these IBGP learned routes to other IBGP speakers. If this rule is relaxed and RTR-C is allowed to advertise IBGP learned routes to IBGP peers, then it could re-advertise (or reflect) the IBGP routes learned from RTR-A to RTR-B and vice versa. This would eliminate the need for the IBGP session between RTR-A and RTR-B as shown in Figure 2 below. +-------+ +-------+ | | | | | RTR-A | | RTR-B | | | | | +-------+ +-------+ \ / IBGP \ ASX / IBGP \ / +-------+ | | | RTR-C | | | +-------+ Figure 2: Route Reflection IBGP The Route Reflection scheme is based upon this basic principle.Bates, et al. Standards Track [Page 3]RFC 2796 BGP Route Reflection April 20004. Terminology and Concepts We use the term "Route Reflection" to describe the operation of a BGP speaker advertising an IBGP learned route to another IBGP peer. Such a BGP speaker is said to be a "Route Reflector" (RR), and such a route is said to be a reflected route. The internal peers of a RR are divided into two groups: 1) Client Peers 2) Non-Client Peers A RR reflects routes between these groups, and may reflect routes among client peers. A RR along with its client peers form a Cluster. The Non-Client peer must be fully meshed but the Client peers need not be fully meshed. Figure 3 depicts a simple example outlining the basic RR components using the terminology noted above. / - - - - - - - - - - - - - - | Cluster | +-------+ +-------+ | | | | | | | RTR-A | | RTR-B | | |Client | |Client | | +-------+ +-------+ | \ / | IBGP \ / IBGP | \ / | +-------+ | | | | | RTR-C | | | RR | | +-------+ | / \ | - - - - - /- - -\- - - - - - / IBGP / \ IBGP +-------+ +-------+ | RTR-D | IBGP | RTR-E | | Non- |---------| Non- | |Client | |Client | +-------+ +-------+ Figure 3: RR ComponentsBates, et al. Standards Track [Page 4]RFC 2796 BGP Route Reflection April 20005. Operation When a RR receives a route from an IBGP peer, it selects the best path based on its path selection rule. After the best path is selected, it must do the following depending on the type of the peer it is receiving the best path from: 1) A Route from a Non-Client IBGP peer Reflect to all the Clients. 2) A Route from a Client peer Reflect to all the Non-Client peers and also to the Client peers. (Hence the Client peers are not required to be fully meshed.) An Autonomous System could have many RRs. A RR treats other RRs just like any other internal BGP speakers. A RR could be configured to have other RRs in a Client group or Non-client group. In a simple configuration the backbone could be divided into many clusters. Each RR would be configured with other RRs as Non-Client peers (thus all the RRs will be fully meshed.). The Clients will be configured to maintain IBGP session only with the RR in their cluster. Due to route reflection, all the IBGP speakers will receive reflected routing information. It is possible in a Autonomous System to have BGP speakers that do not understand the concept of Route-Reflectors (let us call them conventional BGP speakers). The Route-Reflector Scheme allows such conventional BGP speakers to co-exist. Conventional BGP speakers could be either members of a Non-Client group or a Client group. This allows for an easy and gradual migration from the current IBGP model to the Route Reflection model. One could start creating clusters by configuring a single router as the designated RR and configuring other RRs and their clients as normal IBGP peers. Additional clusters can be created gradually.6. Redundant RRs Usually a cluster of clients will have a single RR. In that case, the cluster will be identified by the ROUTER_ID of the RR. However, this represents a single point of failure so to make it possible to have multiple RRs in the same cluster, all RRs in the same cluster can be configured with a 4-byte CLUSTER_ID so that an RR can discard routes from other RRs in the same cluster.Bates, et al. Standards Track [Page 5]RFC 2796 BGP Route Reflection April 20007. Avoiding Routing Information Loops When a route is reflected, it is possible through mis-configuration to form route re-distribution loops. The Route Reflection method defines the following attributes to detect and avoid routing information loops: ORIGINATOR_ID ORIGINATOR_ID is a new optional, non-transitive BGP attribute of Type code 9. This attribute is 4 bytes long and it will be created by a RR in reflecting a route. This attribute will carry the ROUTER_ID of the originator of the route in the local AS. A BGP speaker should not create an ORIGINATOR_ID attribute if one already exists. A router which recognizes the ORIGINATOR_ID attribute should ignore a route received with its ROUTER_ID as the ORIGINATOR_ID. CLUSTER_LIST Cluster-list is a new optional, non-transitive BGP attribute of Type code 10. It is a sequence of CLUSTER_ID values representing the reflection path that the route has passed. It is encoded as follows: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -