📄 matrix.h
字号:
int inverse(double a[], int n) //求逆函数
{
int *is,*js,i,j,k,l,u,v;
double d,p;
is=(int*)malloc(n*sizeof(int));//代表矩阵的行
js=(int*)malloc(n*sizeof(int)); //代表矩阵的列
for (k=0; k<=n-1; k++)
{
d=0.0;
for (i=k; i<=n-1; i++)
for (j=k; j<=n-1; j++)
{
l=i*n+j;
p=fabs(a[l]);
if (p>d)
{
d=p;
is[k]=i;
js[k]=j;
}
}
if (d+1.0==1.0)//主要是防止计算机的舍入误差造成的错误。
{
free(is);
free(js);
printf("err**not inv\n");
return(0);
}
if (is[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j;
v=is[k]*n+j;
p=a[u];
a[u]=a[v];
a[v]=p;
}
if (js[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k;
v=i*n+js[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
l=k*n+k;
a[l]=1.0/a[l];
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=k*n+j;
a[u]=a[u]*a[l];
}
for (i=0; i<=n-1; i++)
if (i!=k)
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=i*n+j;
a[u]=a[u]-a[i*n+k]*a[k*n+j];
}
for (i=0; i<=n-1; i++)
if (i!=k)
{
u=i*n+k;
a[u]=-a[u]*a[l];
}
}//结束for (k=0; k<=n-1; k++)
for (k=n-1; k>=0; k--)
{
if (js[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j;
v=js[k]*n+j;
p=a[u]; a[u]=a[v]; a[v]=p;
}
if (is[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k;
v=i*n+is[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
}
free(is);
free(js);
return(1);
} //结束矩阵转置函数inverse()*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -