📄 fm_thload.m
字号:
function fm_thload(flag)
% FM_THLOAD defines Thermostatically Controlled Loads
%
% FM_THLOAD(FLAG)
% FLAG = 0 initialization
% FLAG = 1 algebraic equations
% FLAG = 2 algebraic Jacobians
% FLAG = 3 differential equations
% FLAG = 4 state matrix
% FLAG = 5 non-windup limits
%
%Author: Federico Milano
%Date: 11-Nov-2002
%Version: 1.0.0
%
%E-mail: fmilano@thunderbox.uwaterloo.ca
%Web-site: http://thunderbox.uwaterloo.ca/~fmilano
%
% Copyright (C) 2002-2006 Federico Milano
global Thload DAE Bus PQ Varname
T = DAE.x(Thload.T);
G = DAE.x(Thload.G);
V = DAE.V(Thload.bus);
Kp = Thload.con(:,3);
Ki = Thload.con(:,4);
Tc = Thload.con(:,5);
T1 = Thload.con(:,6);
Ta = Thload.con(:,7);
Tref = Thload.con(:,8);
G_max = Thload.con(:,9);
K1 = Thload.con(:,10);
KL = Thload.con(:,11);
% Initialization Routines:
switch flag
case 0
Pl = zeros(Thload.n,1);
% get powers and change PQ loads
for i = 1:Thload.n
idx = findbus(PQ,Thload.bus(i));
if isempty(idx)
fm_disp(['Error: No PQ Load found at Therm. Contr. ', ...
'Load at Bus ', Varname.bus{Thload.bus(i)}],2)
else
Pl(i) = Thload.con(i,2)*PQ.P0(idx)/100;
PQ = pqsub(PQ,idx,Pl(i),0);
PQ = remove(PQ,idx,'zero');
end
end
DAE.x(Thload.G) = Pl./V./V;
G = DAE.x(Thload.G);
DAE.x(Thload.T) = Tref;
Thload.con(:,10) = (Tref-Ta)./Pl;
idx = find(T1==0);
if idx
Thload.con(idx,8) = 1200;
thwarn(idx,[' Found T1 = 0. Default value T1 = 1200 s ', ...
'will be used.'])
end
idx = find(KL<1);
if idx
Thload.con(idx,11) = 2;
thwarn(idx,' Found KL < 1. Default value KL = 2 will be used.')
end
% fix G_max
Thload.con(:,9) = 2*G;
fm_disp('Initialization of thermostatically controlled loads completed.')
case 1 % algebraic equations
DAE.gp = DAE.gp + sparse(Thload.bus,1,G.*V.*V,Bus.n,1);
case 2 % algebraic Jacobians
DAE.J12 = DAE.J12 + sparse(Thload.bus,Thload.bus, ...
2*G.*V,Bus.n,Bus.n);
case 3 % differential equations
DAE.f(Thload.T) = (Ta-T+K1.*G.*V.^2)./T1;
% allow no dynamics
no_dyn_G = find(Tc == 0);
Tc(no_dyn_G) = 1;
DAE.f(Thload.G) = (-Kp.*(Ta-T+K1.*G.*V.^2)./T1+Ki.*(Tref-T))./Tc;
DAE.f(Thload.G(no_dyn_G)) = 0;
% non-windup limits
idx = find(G >= G_max & DAE.f(Thload.G) > 0);
if idx, DAE.f(Thload.G(idx)) = 0; end
idx = find(G <= 0 & DAE.f(Thload.G) < 0);
if idx, DAE.f(Thload.G(idx)) = 0; end
DAE.x(Thload.G) = min(DAE.x(Thload.G),G_max);
DAE.x(Thload.G) = max(DAE.x(Thload.G),0);
case 4 % Jacobians of state variables
DAE.Fx = DAE.Fx + sparse(Thload.T,Thload.T,-1./T1,DAE.n,DAE.n);
DAE.Fx = DAE.Fx + sparse(Thload.T,Thload.G,K1.*V.^2./T1,DAE.n,DAE.n);
% allow no dynamics
no_dyn_G = find(Tc == 0);
Tc(no_dyn_G) = 1;
DAE.Fx = DAE.Fx + sparse(Thload.G,Thload.T, ...
(Kp./T1-Ki)./Tc,DAE.n,DAE.n);
DAE.Fx = DAE.Fx + sparse(Thload.G,Thload.G, ...
-Kp.*K1.*V.^2./T1./Tc,DAE.n,DAE.n);
DAE.Fy = DAE.Fy + sparse(Thload.T,Thload.bus+Bus.n, ...
2*K1.*G.*V./T1,DAE.n,2*Bus.n);
DAE.Fy = DAE.Fy + sparse(Thload.G,Thload.bus+Bus.n, ...
-2*Kp.*K1.*G.*V./T1./Tc,DAE.n,2*Bus.n);
DAE.Gx = DAE.Gx + sparse(Thload.bus+Bus.n,Thload.G,V.*V,2*Bus.n,DAE.n);
case 5 % non-windup limiters
idx = find((G >= G_max | G <= 0) & DAE.f(Thload.G) == 0);
if idx
global Settings
k = Thload.G(idx);
DAE.tn(k) = 0;
DAE.Ac(:,k) = 0;
DAE.Ac(k,:) = 0;
DAE.Ac(k,k) = -speye(length(idx));
end
end
% -------------------------------------------------------------------
% function for creating warning messages
function thwarn(idx, msg)
global Thload Varname
fm_disp(strcat('Warning: Thermostatically controlled load #', ...
int2str(idx),' at bus #',Varname.bus{Thload.bus(idx)},msg))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -