⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dprivatesptrs.f

📁 a software code for computing selected eigenvalues of large sparse symmetric matrices
💻 F
字号:
#include <ilupack_fortran.h>      SUBROUTINE DPRIVATESPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )**  -- LAPACK routine (version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     March 31, 1993**     .. Scalar Arguments ..      CHARACTER          UPLO      integer            INFO, LDB, N, NRHS*     ..*     .. Array Arguments ..      integer            IPIV( * )      DOUBLE PRECISION   AP( * ), B( LDB, * )*     ..**  Purpose*  =======**  DSPTRS solves a system of linear equations A*X = B with a real*  symmetric matrix A stored in packed format using the factorization*  A = U*D*U**T or A = L*D*L**T computed by DSPTRF.**  Arguments*  =========**  UPLO    (input) CHARACTER*1*          Specifies whether the details of the factorization are stored*          as an upper or lower triangular matrix.*          = 'U':  Upper triangular, form is A = U*D*U**T;*          = 'L':  Lower triangular, form is A = L*D*L**T.**  N       (input) integer*          The order of the matrix A.  N >= 0.**  NRHS    (input) integer*          The number of right hand sides, i.e., the number of columns*          of the matrix B.  NRHS >= 0.**  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)*          The block diagonal matrix D and the multipliers used to*          obtain the factor U or L as computed by DSPTRF, stored as a*          packed triangular matrix.**  IPIV    (input) integer array, dimension (N)*          Details of the interchanges and the block structure of D*          as determined by DSPTRF.**  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)*          On entry, the right hand side matrix B.*          On exit, the solution matrix X.**  LDB     (input) integer*          The leading dimension of the array B.  LDB >= max(1,N).**  INFO    (output) integer*          = 0:  successful exit*          < 0: if INFO = -i, the i-th argument had an illegal value**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE      PARAMETER          ( ONE = 1.0D+0 )*     ..*     .. Local Scalars ..      LOGICAL            UPPER      integer            J, K, KC, KP      DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM*     ..*     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     ..*     .. External Subroutines ..      EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX*     ..*     .. Executable Statements ..*      INFO = 0      UPPER = LSAME( UPLO, 'U' )      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( NRHS.LT.0 ) THEN         INFO = -3      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN         INFO = -7      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DSPTRS', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.EQ.0 .OR. NRHS.EQ.0 )     $   RETURN*      IF( UPPER ) THEN**        Solve A*X = B, where A = U*D*U'.**        First solve U*D*X = B, overwriting B with X.**        K is the main loop index, decreasing from N to 1 in steps of*        1 or 2, depending on the size of the diagonal blocks.*         K = N         KC = N*( N+1 ) / 2 + 1   10    CONTINUE**        If K < 1, exit from loop.*         IF( K.LT.1 )     $      GO TO 30*         KC = KC - K         IF( IPIV( K ).GT.0 ) THEN**           1 x 1 diagonal block**           Interchange rows K and IPIV(K).*            KP = IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )**           Multiply by inv(U(K)), where U(K) is the transformation*           stored in column K of A.*            CALL DGER( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,     $                 B( 1, 1 ), LDB )**           Multiply by the inverse of the diagonal block.*            CALL DSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB )            K = K - 1         ELSE**           2 x 2 diagonal block**           Interchange rows K-1 and -IPIV(K).*            KP = -IPIV( K )            IF( KP.NE.K-1 )     $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )**           Multiply by inv(U(K)), where U(K) is the transformation*           stored in columns K-1 and K of A.*            CALL DGER( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,     $                 B( 1, 1 ), LDB )            CALL DGER( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,     $                 B( K-1, 1 ), LDB, B( 1, 1 ), LDB )**           Multiply by the inverse of the diagonal block.*            AKM1K = AP( KC+K-2 )            AKM1 = AP( KC-1 ) / AKM1K            AK = AP( KC+K-1 ) / AKM1K            DENOM = AKM1*AK - ONE            DO 20 J = 1, NRHS               BKM1 = B( K-1, J ) / AKM1K               BK = B( K, J ) / AKM1K               B( K-1, J ) = ( AK*BKM1-BK ) / DENOM               B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM   20       CONTINUE            KC = KC - K + 1            K = K - 2         END IF*         GO TO 10   30    CONTINUE**        Next solve U'*X = B, overwriting B with X.**        K is the main loop index, increasing from 1 to N in steps of*        1 or 2, depending on the size of the diagonal blocks.*         K = 1         KC = 1   40    CONTINUE**        If K > N, exit from loop.*         IF( K.GT.N )     $      GO TO 50*         IF( IPIV( K ).GT.0 ) THEN**           1 x 1 diagonal block**           Multiply by inv(U'(K)), where U(K) is the transformation*           stored in column K of A.*            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),     $                  1, ONE, B( K, 1 ), LDB )**           Interchange rows K and IPIV(K).*            KP = IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )            KC = KC + K            K = K + 1         ELSE**           2 x 2 diagonal block**           Multiply by inv(U'(K+1)), where U(K+1) is the transformation*           stored in columns K and K+1 of A.*            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),     $                  1, ONE, B( K, 1 ), LDB )            CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,     $                  AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )**           Interchange rows K and -IPIV(K).*            KP = -IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )            KC = KC + 2*K + 1            K = K + 2         END IF*         GO TO 40   50    CONTINUE*      ELSE**        Solve A*X = B, where A = L*D*L'.**        First solve L*D*X = B, overwriting B with X.**        K is the main loop index, increasing from 1 to N in steps of*        1 or 2, depending on the size of the diagonal blocks.*         K = 1         KC = 1   60    CONTINUE**        If K > N, exit from loop.*         IF( K.GT.N )     $      GO TO 80*         IF( IPIV( K ).GT.0 ) THEN**           1 x 1 diagonal block**           Interchange rows K and IPIV(K).*            KP = IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )**           Multiply by inv(L(K)), where L(K) is the transformation*           stored in column K of A.*            IF( K.LT.N )     $         CALL DGER( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),     $                    LDB, B( K+1, 1 ), LDB )**           Multiply by the inverse of the diagonal block.*            CALL DSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB )            KC = KC + N - K + 1            K = K + 1         ELSE**           2 x 2 diagonal block**           Interchange rows K+1 and -IPIV(K).*            KP = -IPIV( K )            IF( KP.NE.K+1 )     $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )**           Multiply by inv(L(K)), where L(K) is the transformation*           stored in columns K and K+1 of A.*            IF( K.LT.N-1 ) THEN               CALL DGER( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),     $                    LDB, B( K+2, 1 ), LDB )               CALL DGER( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,     $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )            END IF**           Multiply by the inverse of the diagonal block.**           In contrast to LAPACK's driver, the diagonal block is*           manually converted to SPD. Thus the off-diagonal entry*           might be small or even zero            AKM1K = AP( KC+1 )            AKM1  = AP( KC )             if (DABS(AKM1).le.DABS(AKM1K)) then               AKM1 = AKM1 / AKM1K               AK = AP( KC+N-K+1 ) / AKM1K               DENOM = AKM1*AK - ONE               DO 70 J = 1, NRHS                  BKM1 = B( K, J ) / AKM1K                  BK = B( K+1, J ) / AKM1K                  B( K, J ) = ( AK*BKM1-BK ) / DENOM                  B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM 70            CONTINUE            else               AK = AP( KC+N-K+1 )               DENOM = AKM1*AK - AKM1K*AKM1K               DO 71 J = 1, NRHS                  BKM1 = B( K,   J )                   BK   = B( K+1, J )                   B( K,   J ) = ( AK  *BKM1-AKM1K*BK   ) / DENOM                  B( K+1, J ) = ( AKM1*BK  -AKM1K*BKM1 ) / DENOM 71               CONTINUE            end if            KC = KC + 2*( N-K ) + 1            K = K + 2         END IF*         GO TO 60   80    CONTINUE**        Next solve L'*X = B, overwriting B with X.**        K is the main loop index, decreasing from N to 1 in steps of*        1 or 2, depending on the size of the diagonal blocks.*         K = N         KC = N*( N+1 ) / 2 + 1   90    CONTINUE**        If K < 1, exit from loop.*         IF( K.LT.1 )     $      GO TO 100*         KC = KC - ( N-K+1 )         IF( IPIV( K ).GT.0 ) THEN**           1 x 1 diagonal block**           Multiply by inv(L'(K)), where L(K) is the transformation*           stored in column K of A.*            IF( K.LT.N )     $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),     $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )**           Interchange rows K and IPIV(K).*            KP = IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )            K = K - 1         ELSE**           2 x 2 diagonal block**           Multiply by inv(L'(K-1)), where L(K-1) is the transformation*           stored in columns K-1 and K of A.*            IF( K.LT.N ) THEN               CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),     $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )               CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),     $                     LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ),     $                     LDB )            END IF**           Interchange rows K and -IPIV(K).*            KP = -IPIV( K )            IF( KP.NE.K )     $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )            KC = KC - ( N-K+2 )            K = K - 2         END IF*         GO TO 90  100    CONTINUE      END IF*      RETURN**     End of DSPTRS*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -