📄 montecarlomaplet.mw
字号:
<Output><Text-field style="Warning" layout="Warning">Warning, the name changecoords has been redefined</Text-field></Output></Group></Section><Section collapsed="false" MultipleChoiceAnswerIndex="-1" MultipleChoiceRandomizeChoices="false" TrueFalseAnswerIndex="-1" EssayAnswerRows="5" EssayAnswerColumns="60"><Title><Text-field style="Heading 1" layout="Heading 1">2. Procedures for the simulation</Text-field></Title><Group labelreference="L112" drawlabel="true"><Input><Text-field prompt="> " style="Maple Input" layout="Normal"><Font size="9"> </Font><Font size="20" foreground="[0,0,0]">#1. Load Simulation properties </Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">simprop := proc()</Font><Font size="9"> local i: global ARdv, ARd, ATdv, ATd, RRdv, RRd, RTdv, RTd, DRAv, DRA, Na, Nr, dr, Nz, dz, wmin, m, da:<Font foreground="[0,0,0]"> # Parameters for Angular Resolution. Can be changed in INPUT</Font><Font background="[255,255,204]" opaque="true"> Na := 30: <Font italic="true" foreground="[0,0,0]"># INPUT number of grid elements for exit angle, alphat</Font> da := Pi/(2*Na): <Font italic="true" foreground="[0,0,0]"># delta_alpha, angle resolution </Font> </Font> ARdv := array(0..Na-1): ARd := array(0..Na-1): ATdv := array(0..Na-1): ATd := array(0..Na-1): for i from 0 to Na-1 do ARdv[i] := 0; <Font italic="true" foreground="[0,0,0]"># Rd values initialized to 0</Font> ARd[i] := (i+0.5)*da; #(1/2)*(i*Pi/(2*Na)+(i+1)*Pi/(2*Na)); ATdv[i] := 0; <Font italic="true" foreground="[0,0,0]"># Td values initialized to 0</Font> ATd[i] := (i+0.5)*da;#(1/2)*(i*Pi/(2*Na)+(i+1)*Pi/(2*Na)); od: <Font foreground="[0,0,0]"># Parameters for Radial Resolution. Can be changed in INPUT</Font><Font background="[255,255,204]" opaque="true"> Nr := 200: <Font italic="true" foreground="[0,0,0]"># INPUT number of radial grid elements</Font> dr := 0.05: <Font italic="true" foreground="[0,0,0]"># INPUT radial resolution [cm] </Font><Font foreground="[0,0,0]"> </Font> </Font> RRdv := array(0..Nr-1): RRd := array(0..Nr-1): RTdv := array(0..Nr-1): RTd := array(0..Nr-1): for i from 0 to Nr-1 do RRdv[i] := 0; <Font italic="true" foreground="[0,0,0]"># Rd values initialized to 0</Font> RRd[i] := (i+0.5)*dr; RTdv[i] := 0; <Font italic="true" foreground="[0,0,0]"># Td values initialized to 0</Font> RTd[i] := (i+0.5)*dr; od: <Font foreground="[0,0,0]"># Parameters for Depth Absorption Resolution</Font> <Font background="[102,255,102]" opaque="true"></Font><Font background="[255,255,204]" opaque="true"> Nz := 20; <Font italic="true" foreground="[0,0,0]"># *INPUT* number of depth grid elements</Font><Font italic="true"> </Font> dz := totald/Nz; <Font italic="true" foreground="[0,0,0]"># *INPUT* depth resolution where totald is the sum of the thickness of all layers</Font> </Font></Font><Font background="[255,255,204]" opaque="true" size="10"> </Font><Font size="9"> DRAv := array(0..Nz-1): DRA := array(0..Nz-1): for i from 0 to Nz-1 do DRA[i] := (i+0.5)*dz: DRAv[i] := 0: od: <Font foreground="[0,0,0]"># Photon Properties</Font> <Font background="[255,255,204]" opaque="true">wmin := 0.0001: m := 10:</Font> <Font foreground="[153,0,153]">end:</Font></Font><Font size="20" foreground="[0,0,0]">#2. Load random number generator</Font><Font size="9"><Font opaque="true"> </Font></Font><Font opaque="true" size="18" foreground="[153,0,153]">xi := proc()</Font><Font opaque="true" size="9"> evalf(rand()/999999999999); <Font foreground="[153,0,153]">end:</Font></Font><Font size="9"></Font><Font size="20" foreground="[0,0,0]">#3. Load initial conditions</Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">initialcond := proc()</Font><Font size="9"> global s, sleft, w, x, y, z, Rsp: <Font italic="true" foreground="[0,0,0]"># step size, remaining step, photon weight, x,y,z) co-ordinates, specular reflectance</Font> x := 0: y := 0: z := 0: <Font italic="true" foreground="[0,0,0]"> </Font> s := 0: sleft := 0: w := 1: Rsp := 0: <Font foreground="[153,0,153]">end:</Font></Font><Font size="20" foreground="[0,0,0]">#4. Initial directions for launch angle </Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">initialangle := proc(langle)</Font><Font size="9"> local temp; global ux, uy, uz: <Font italic="true" foreground="[0,0,0]"># (ux, uy, uz) angle cossines</Font> temp := 90 - langle: <Font italic="true" foreground="[0,0,0]"># angle relative to surface's normal</Font> temp := evalf(temp*Pi/180): <Font italic="true" foreground="[0,0,0]"># convert to radians</Font> uz := cos(temp): ux := sqrt((1-uz*uz)/2): uy := ux: <Font italic="true" foreground="[0,0,0]"># ux=uy since ux, uy are assumed arbitrary</Font></Font><Font size="9">end:</Font><Font opaque="true" size="20" foreground="[0,0,0]">#5. Specular Reflection</Font><Font opaque="true" size="9" foreground="[255,255,255]"> </Font><Font opaque="true" size="18" foreground="[153,0,153]">specular := proc()</Font><Font opaque="true" size="9" foreground="[255,255,255]"> </Font><Font opaque="true" size="9"> global Rsp, TRsp, w: Rsp := ((n[0]-n[1])^2)/((n[0]+n[1])^2): TRsp := TRsp + Rsp: w := 1-Rsp:<Font foreground="[255,255,255]"> </Font><Font foreground="[153,0,153]"> end:</Font><Font foreground="[255,255,255]"></Font></Font><Font size="9"></Font><Font size="20" foreground="[0,0,0]">#6. Step size calculation</Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">stepsize := proc()</Font><Font size="9"> global s, sleft: if sleft = 0 then s := -ln(xi())/mut[layer]: else s := sleft/mut[layer]: sleft := 0: fi: <Font foreground="[153,0,153]">end:</Font></Font><Font opaque="true" size="20" foreground="[0,0,0]">#7. Find distance calculation</Font><Font opaque="true" size="9"> </Font><Font opaque="true" size="18" foreground="[153,0,153]">finddistance := proc()</Font><Font opaque="true" size="9"> global db, r: if uz > 0 then db := (z1[layer]-z)/uz: <Font italic="true" foreground="[0,0,0]"># from lower layer</Font> elif uz < 0 then db := (z0[layer]-z)/uz: <Font italic="true" foreground="[0,0,0]"># from upper layer</Font> fi: r := sqrt(x*x+y*y): <Font italic="true" foreground="[0,0,0]"># radial position</Font> <Font foreground="[153,0,153]">end:</Font></Font><Font size="9"></Font><Font size="20" foreground="[0,0,0]">#8. Move photon to boundary</Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">movetoboundary := proc()</Font><Font size="9"> global x, y, z, w, layer; if uz > 0 then <Font italic="true" foreground="[0,0,0]"># going down</Font> x := x + ux*db; y := y + uy*db; z := z1[layer]; elif uz < 0 then <Font italic="true" foreground="[0,0,0]"># going up</Font> x := x + ux*db; y := y + uy*db; z := z0[layer]; else <Font italic="true" foreground="[0,0,0]"># total internal reflection</Font> w := 0; fi: end:</Font><Font size="20" foreground="[0,0,0]">#9. Photon angles</Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">angles := proc()</Font><Font size="9"> global alphai, alphat, alphac, ni, nt; <Font italic="true" foreground="[0,0,0]"># alphai, t, c used for transmit out or reflect # alphat, r used for angularly resolved diffuse</Font> ni := n[layer]: if uz > 0 then nt := n[layer+1]: <Font italic="true" foreground="[0,0,0]"># If heading down, transmitted layer is next one</Font> elif uz < 0 then nt := n[layer-1]: <Font italic="true" foreground="[0,0,0]"># If heading up, transmitted layer is previous one</Font><Font background="[255,255,102]" opaque="true"></Font> fi: alphai := arccos(abs(uz)); <Font italic="true" foreground="[0,0,0]"># alphai, incident angle</Font> alphat := arcsin(ni/nt*sin(alphai)); <Font italic="true" foreground="[0,0,0]"># alphat, transmitted angle</Font> alphac := arcsin(nt/ni); <Font italic="true" foreground="[0,0,0]"># alphac = critical angle</Font> <Font foreground="[153,0,153]">end:</Font></Font><Font size="20" foreground="[0,0,0]">#10. Calculate the Fresnel Reflectance</Font><Font size="9"> </Font><Font size="18" foreground="[153,0,153]">fresnel := proc()</Font><Font size="9"> global R; if evalf(alphai) > evalf(alphac) then <Font italic="true" foreground="[0,0,0]"># total reflection</Font> R := 1; else <Font italic="true" foreground="[0,0,0]"># total transmission</Font> if alphai <> 0 then R := 0.5*((sin(alphai-alphat))^2/(sin(alphai+alphat))^2+(tan(alphai-alphat))^2/(tan(alphai+alphat))^2); else <Font italic="true" foreground="[0,0,0]"># normal incidence</Font> R := (ni-nt)^2/(ni+nt)^2: fi; fi; <Font foreground="[153,0,153]">end:</Font></Font><Font size="20" foreground="[0,0,0]">#11. Angular/radially ly Resolved transmittance</Font><Equation executable="true" style="2D Input" input-equation="">NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNictSSNtaUdGJTY5USFGKC8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYoLyUlc2l6ZUdRIzEyRigvJSVib2xkR1EmZmFsc2VGKC8lJ2l0YWxpY0dRJXRydWVGKC8lKnVuZGVybGluZUdGOC8lKnN1YnNjcmlwdEdGOC8lLHN1cGVyc2NyaXB0R0Y4LyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y7LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RigvJSptYXRoY29sb3JHRkQvJS9tYXRoYmFja2dyb3VuZEdGRy8lK2ZvbnRmYW1pbHlHRjIvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YoLyUpbWF0aHNpemVHRjUtSSdtc3BhY2VHRiU2Ji8lJ2hlaWdodEdRJzAuMH5leEYoLyUmd2lkdGhHUScwLjB+ZW1GKC8lJmRlcHRoR0Zjby8lKmxpbmVicmVha0dRKG5ld2xpbmVGKEYsRl5vRiw3I0Yo</Equation><Font size="18" foreground="[153,0,153]">transmit:=proc()</Font><Font size="9"> global RTdv, ATdv, TTA, TTR, TT; local di,k,ri,i,j;for i from 0 to Na-1 do ATdv[i]:=0;od;for j from 0 to Nr-1 doRTdv[j]:=0;od;for k to nops(TT) dodi:=checkA(TTA[k]); ATdv[di] := ATdv[di] + TT[k]:if TTR[k] < dr*(Nr) then ri:=checkR(TTR[k]); RTdv[ri] := RTdv[ri] + TT[k]: fi; od;<Font background="[255,255,102]" opaque="true"></Font><Font foreground="[255,51,102]"> </Font><Font foreground="[153,0,153]"> end:</Font><Font foreground="[255,51,102]"></Font></Font><Font size="20" foreground="[0,0,0]">#12. Angular/radially Resolved Diffuse reflectance</Font><Font size="9" foreground="[255,51,102]"></Font><Font size="18" foreground="[153,0,153]">reflect:=proc()</Font><Font size="9" foreground="[255,51,102]"></Font><Font size="9"> global RRdv, ARdv, ATT, RTT, RR; local di,k,ri,i,j;for i from 0 to Na-1 do ARdv[i]:=0;od;for j from 0 to Nr-1 doRRdv[j]:=0;od;for k to nops(RR) dodi:=checkA(ATT[k]); ARdv[di] := ARdv[di] + RR[k]:if RTT[k] < dr*(Nr) then ri:=checkR(RTT[k]); RRdv[ri] := RRdv[ri] + RR[k]: fi; od;<Font foreground="[255,51,102]"> </Font><Font foreground="[153,0,153]"> end:</Font></Font><Font foreground="[153,0,153]">checkA:=proc(alpha)<Font size="9">local di,difference,dda;dda:=evalf(da);for di from 0 to Na-1 do difference := abs(alpha - evalf(ATd[di])); if difference < dda then
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -