⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitsieve.java

📁 java源代码 请看看啊 提点宝贵的意见
💻 JAVA
字号:
/* * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. *//* * @(#)BitSieve.java	1.9 03/01/23 */package java.math;/** * A simple bit sieve used for finding prime number candidates. Allows setting * and clearing of bits in a storage array. The size of the sieve is assumed to * be constant to reduce overhead. All the bits of a new bitSieve are zero, and * bits are removed from it by setting them. * * To reduce storage space and increase efficiency, no even numbers are * represented in the sieve (each bit in the sieve represents an odd number). * The relationship between the index of a bit and the number it represents is * given by * N = offset + (2*index + 1); * Where N is the integer represented by a bit in the sieve, offset is some * even integer offset indicating where the sieve begins, and index is the * index of a bit in the sieve array. * * @see     BigInteger * @version 1.9, 01/23/03 * @author  Michael McCloskey * @since   1.3 */class BitSieve {    /**     * Stores the bits in this bitSieve.     */    private long bits[];    /**     * Length is how many bits this sieve holds.     */    private int length;    /**     * A small sieve used to filter out multiples of small primes in a search     * sieve.     */    private static BitSieve smallSieve = new BitSieve();    /**     * Construct a "small sieve" with a base of 0.  This constructor is      * used internally to generate the set of "small primes" whose multiples     * are excluded from sieves generated by the main (package private)     * constructor, BitSieve(BigInteger base, int searchLen).  The length     * of the sieve generated by this constructor was chosen for performance;     * it controls a tradeoff between how much time is spent constructing     * other sieves, and how much time is wasted testing composite candidates     * for primality.  The length was chosen experimentally to yield good     * performance.     */    private BitSieve() {        length = 150 * 64;        bits = new long[(unitIndex(length - 1) + 1)];        // Mark 1 as composite        set(0);        int nextIndex = 1;        int nextPrime = 3;        // Find primes and remove their multiples from sieve        do {            sieveSingle(length, nextIndex + nextPrime, nextPrime);            nextIndex = sieveSearch(length, nextIndex + 1);            nextPrime = 2*nextIndex + 1;        } while((nextIndex > 0) && (nextPrime < length));    }    /**     * Construct a bit sieve of searchLen bits used for finding prime number     * candidates. The new sieve begins at the specified base, which must     * be even.     */    BitSieve(BigInteger base, int searchLen) {        /*         * Candidates are indicated by clear bits in the sieve. As a candidates         * nonprimality is calculated, a bit is set in the sieve to eliminate         * it. To reduce storage space and increase efficiency, no even numbers         * are represented in the sieve (each bit in the sieve represents an         * odd number).         */        bits = new long[(unitIndex(searchLen-1) + 1)];        length = searchLen;        int start = 0;                int step = smallSieve.sieveSearch(smallSieve.length, start);        int convertedStep = (step *2) + 1;        // Construct the large sieve at an even offset specified by base        MutableBigInteger r = new MutableBigInteger();        MutableBigInteger q = new MutableBigInteger();        do {            // Calculate base mod convertedStep            r.copyValue(base.mag);            r.divideOneWord(convertedStep, q);            start = r.value[r.offset];            // Take each multiple of step out of sieve            start = convertedStep - start;            if (start%2 == 0)                start += convertedStep;            sieveSingle(searchLen, (start-1)/2, convertedStep);            // Find next prime from small sieve            step = smallSieve.sieveSearch(smallSieve.length, step+1);            convertedStep = (step *2) + 1;        } while (step > 0);    }            /**     * Given a bit index return unit index containing it.     */    private static int unitIndex(int bitIndex) {        return bitIndex >>> 6;    }    /**     * Return a unit that masks the specified bit in its unit.     */    private static long bit(int bitIndex) {        return 1L << (bitIndex & ((1<<6) - 1));    }    /**     * Get the value of the bit at the specified index.     */    private boolean get(int bitIndex) {        int unitIndex = unitIndex(bitIndex);        return ((bits[unitIndex] & bit(bitIndex)) != 0);    }    /**     * Set the bit at the specified index.     */    private void set(int bitIndex) {        int unitIndex = unitIndex(bitIndex);        bits[unitIndex] |= bit(bitIndex);             }    /**     * This method returns the index of the first clear bit in the search     * array that occurs at or after start. It will not search past the     * specified limit. It returns -1 if there is no such clear bit.     */    private int sieveSearch(int limit, int start) {        if (start >= limit)            return -1;                int index = start;        do {            if (!get(index))                return index;            index++;        } while(index < limit-1);        return -1;    }    /**     * Sieve a single set of multiples out of the sieve. Begin to remove     * multiples of the specified step starting at the specified start index,     * up to the specified limit.     */    private void sieveSingle(int limit, int start, int step) {        while(start < limit) {            set(start);            start += step;        }    }    /**     * Test probable primes in the sieve and return successful candidates.     */    BigInteger retrieve(BigInteger initValue, int certainty) {        // Examine the sieve one long at a time to find possible primes        int offset = 1;        for (int i=0; i<bits.length; i++) {            long nextLong = ~bits[i];            for (int j=0; j<64; j++) {                if ((nextLong & 1) == 1) {                    BigInteger candidate = initValue.add(                                           BigInteger.valueOf(offset));                    if (candidate.primeToCertainty(certainty))                        return candidate;                }                nextLong >>>= 1;                offset+=2;            }        }        return null;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -