📄 biginteger.java
字号:
private int parseInt(char[] source, int start, int end) { int result = Character.digit(source[start++], 10); if (result == -1) throw new NumberFormatException(new String(source)); for (int index = start; index<end; index++) { int nextVal = Character.digit(source[index], 10); if (nextVal == -1) throw new NumberFormatException(new String(source)); result = 10*result + nextVal; } return result; } // bitsPerDigit in the given radix times 1024 // Rounded up to avoid underallocation. private static long bitsPerDigit[] = { 0, 0, 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672, 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633, 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210, 5253, 5295}; // Multiply x array times word y in place, and add word z private static void destructiveMulAdd(int[] x, int y, int z) { // Perform the multiplication word by word long ylong = y & LONG_MASK; long zlong = z & LONG_MASK; int len = x.length; long product = 0; long carry = 0; for (int i = len-1; i >= 0; i--) { product = ylong * (x[i] & LONG_MASK) + carry; x[i] = (int)product; carry = product >>> 32; } // Perform the addition long sum = (x[len-1] & LONG_MASK) + zlong; x[len-1] = (int)sum; carry = sum >>> 32; for (int i = len-2; i >= 0; i--) { sum = (x[i] & LONG_MASK) + carry; x[i] = (int)sum; carry = sum >>> 32; } } /** * Translates the decimal String representation of a BigInteger into a * BigInteger. The String representation consists of an optional minus * sign followed by a sequence of one or more decimal digits. The * character-to-digit mapping is provided by <tt>Character.digit</tt>. * The String may not contain any extraneous characters (whitespace, for * example). * * @param val decimal String representation of BigInteger. * @throws NumberFormatException <tt>val</tt> is not a valid representation * of a BigInteger. * @see Character#digit */ public BigInteger(String val) { this(val, 10); } /** * Constructs a randomly generated BigInteger, uniformly distributed over * the range <tt>0</tt> to <tt>(2<sup>numBits</sup> - 1)</tt>, inclusive. * The uniformity of the distribution assumes that a fair source of random * bits is provided in <tt>rnd</tt>. Note that this constructor always * constructs a non-negative BigInteger. * * @param numBits maximum bitLength of the new BigInteger. * @param rnd source of randomness to be used in computing the new * BigInteger. * @throws IllegalArgumentException <tt>numBits</tt> is negative. * @see #bitLength */ public BigInteger(int numBits, Random rnd) { this(1, randomBits(numBits, rnd)); } private static byte[] randomBits(int numBits, Random rnd) { if (numBits < 0) throw new IllegalArgumentException("numBits must be non-negative"); int numBytes = (numBits+7)/8; byte[] randomBits = new byte[numBytes]; // Generate random bytes and mask out any excess bits if (numBytes > 0) { rnd.nextBytes(randomBits); int excessBits = 8*numBytes - numBits; randomBits[0] &= (1 << (8-excessBits)) - 1; } return randomBits; } /** * Constructs a randomly generated positive BigInteger that is probably * prime, with the specified bitLength.<p> * * It is recommended that the {@link #probablePrime probablePrime} * method be used in preference to this constructor unless there * is a compelling need to specify a certainty. * * @param bitLength bitLength of the returned BigInteger. * @param certainty a measure of the uncertainty that the caller is * willing to tolerate. The probability that the new BigInteger * represents a prime number will exceed * <tt>(1 - 1/2<sup>certainty</sup></tt>). The execution time of * this constructor is proportional to the value of this parameter. * @param rnd source of random bits used to select candidates to be * tested for primality. * @throws ArithmeticException <tt>bitLength < 2</tt>. * @see #bitLength */ public BigInteger(int bitLength, int certainty, Random rnd) { BigInteger prime; if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); // The cutoff of 95 was chosen empirically for best performance prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd) : largePrime(bitLength, certainty, rnd)); signum = 1; mag = prime.mag; } // Minimum size in bits that the requested prime number has // before we use the large prime number generating algorithms private static final int SMALL_PRIME_THRESHOLD = 95; /** * Returns a positive BigInteger that is probably prime, with the * specified bitLength. The probability that a BigInteger returned * by this method is composite does not exceed 2<sup>-100</sup>. * * @param bitLength bitLength of the returned BigInteger. * @param rnd source of random bits used to select candidates to be * tested for primality. * @return a BigInteger of <tt>bitLength</tt> bits that is probably prime * @throws ArithmeticException <tt>bitLength < 2</tt>. * @see #bitLength */ public static BigInteger probablePrime(int bitLength, Random rnd) { if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); // The cutoff of 95 was chosen empirically for best performance return (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, 100, rnd) : largePrime(bitLength, 100, rnd)); } /** * Find a random number of the specified bitLength that is probably prime. * This method is used for smaller primes, its performance degrades on * larger bitlengths. * * This method assumes bitLength > 1. */ private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) { int magLen = (bitLength + 31) >>> 5; int temp[] = new int[magLen]; int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int int highMask = (highBit << 1) - 1; // Bits to keep in high int while(true) { // Construct a candidate for (int i=0; i<magLen; i++) temp[i] = rnd.nextInt(); temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length if (bitLength > 2) temp[magLen-1] |= 1; // Make odd if bitlen > 2 BigInteger p = new BigInteger(temp, 1); // Do cheap "pre-test" if applicable if (bitLength > 6) { long r = p.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) continue; // Candidate is composite; try another } // All candidates of bitLength 2 and 3 are prime by this point if (bitLength < 4) return p; // Do expensive test if we survive pre-test (or it's inapplicable) if (p.primeToCertainty(certainty)) return p; } } private static final BigInteger SMALL_PRIME_PRODUCT = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41); /** * Find a random number of the specified bitLength that is probably prime. * This method is more appropriate for larger bitlengths since it uses * a sieve to eliminate most composites before using a more expensive * test. */ private static BigInteger largePrime(int bitLength, int certainty, Random rnd) { BigInteger p; p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; // Use a sieve length likely to contain the next prime number int searchLen = (bitLength / 20) * 64; BitSieve searchSieve = new BitSieve(p, searchLen); BigInteger candidate = searchSieve.retrieve(p, certainty); while ((candidate == null) || (candidate.bitLength() != bitLength)) { p = p.add(BigInteger.valueOf(2*searchLen)); if (p.bitLength() != bitLength) p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; searchSieve = new BitSieve(p, searchLen); candidate = searchSieve.retrieve(p, certainty); } return candidate; } /** * Returns <tt>true</tt> if this BigInteger is probably prime, * <tt>false</tt> if it's definitely composite. * * This method assumes bitLength > 2. * * @param certainty a measure of the uncertainty that the caller is * willing to tolerate: if the call returns <tt>true</tt> * the probability that this BigInteger is prime exceeds * <tt>(1 - 1/2<sup>certainty</sup>)</tt>. The execution time of * this method is proportional to the value of this parameter. * @return <tt>true</tt> if this BigInteger is probably prime, * <tt>false</tt> if it's definitely composite. */ boolean primeToCertainty(int certainty) { int rounds = 0; int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2; // The relationship between the certainty and the number of rounds // we perform is given in the draft standard ANSI X9.80, "PRIME // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES". int sizeInBits = this.bitLength(); if (sizeInBits < 100) { rounds = 50; rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds); } if (sizeInBits < 256) { rounds = 27; } else if (sizeInBits < 512) { rounds = 15; } else if (sizeInBits < 768) { rounds = 8; } else if (sizeInBits < 1024) { rounds = 4; } else { rounds = 2; } rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds) && passesLucasLehmer(); } /** * Returns true iff this BigInteger is a Lucas-Lehmer probable prime. * * The following assumptions are made: * This BigInteger is a positive, odd number. */ private boolean passesLucasLehmer() { BigInteger thisPlusOne = this.add(ONE); // Step 1 int d = 5; while (jacobiSymbol(d, this) != -1) { // 5, -7, 9, -11, ... d = (d<0) ? Math.abs(d)+2 : -(d+2); } // Step 2 BigInteger u = lucasLehmerSequence(d, thisPlusOne, this); // Step 3 return u.mod(this).equals(ZERO); } /** * Computes Jacobi(p,n). * Assumes n is positive, odd. */ int jacobiSymbol(int p, BigInteger n) { if (p == 0) return 0; // Algorithm and comments adapted from Colin Plumb's C library. int j = 1; int u = n.mag[n.mag.length-1]; // Make p positive if (p < 0) { p = -p; int n8 = u & 7; if ((n8 == 3) || (n8 == 7)) j = -j; // 3 (011) or 7 (111) mod 8 } // Get rid of factors of 2 in p while ((p & 3) == 0) p >>= 2; if ((p & 1) == 0) { p >>= 1; if (((u ^ u>>1) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (p == 1) return j; // Then, apply quadratic reciprocity if ((p & u & 2) != 0) // p = u = 3 (mod 4)? j = -j; // And reduce u mod p u = n.mod(BigInteger.valueOf(p)).intValue(); // Now compute Jacobi(u,p), u < p while (u != 0) { while ((u & 3) == 0) u >>= 2; if ((u & 1) == 0) { u >>= 1; if (((p ^ p>>1) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (u == 1) return j; // Now both u and p are odd, so use quadratic reciprocity if (u < p) { int t = u; u = p; p = t; if ((u & p & 2) != 0)// u = p = 3 (mod 4)? j = -j; } // Now u >= p, so it can be reduced u %= p; } return 0; } private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) { BigInteger d = BigInteger.valueOf(z); BigInteger u = ONE; BigInteger u2; BigInteger v = ONE; BigInteger v2; for (int i=k.bitLength()-2; i>=0; i--) { u2 = u.multiply(v).mod(n); v2 = v.square().add(d.multiply(u.square())).mod(n); if (v2.testBit(0)) { v2 = n.subtract(v2); v2.signum = - v2.signum; } v2 = v2.shiftRight(1); u = u2; v = v2; if (k.testBit(i)) { u2 = u.add(v).mod(n); if (u2.testBit(0)) { u2 = n.subtract(u2); u2.signum = - u2.signum; } u2 = u2.shiftRight(1); v2 = v.add(d.multiply(u)).mod(n); if (v2.testBit(0)) { v2 = n.subtract(v2); v2.signum = - v2.signum; } v2 = v2.shiftRight(1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -