📄 hashmap.java
字号:
/* * @(#)HashMap.java 1.57 03/01/23 * * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */package java.util;import java.io.*;/** * Hash table based implementation of the <tt>Map</tt> interface. This * implementation provides all of the optional map operations, and permits * <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt> * class is roughly equivalent to <tt>Hashtable</tt>, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * * <p>This implementation provides constant-time performance for the basic * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * * <p>An instance of <tt>HashMap</tt> has two parameters that affect its * performance: <i>initial capacity</i> and <i>load factor</i>. The * <i>capacity</i> is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * <i>load factor</i> is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the capacity is roughly doubled by calling the * <tt>rehash</tt> method. * * <p>As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of <tt>rehash</tt> operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * <tt>rehash</tt> operations will ever occur. * * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * * <p><b>Note that this implementation is not synchronized.</b> If multiple * threads access this map concurrently, and at least one of the threads * modifies the map structurally, it <i>must</i> be synchronized externally. * (A structural modification is any operation that adds or deletes one or * more mappings; merely changing the value associated with a key that an * instance already contains is not a structural modification.) This is * typically accomplished by synchronizing on some object that naturally * encapsulates the map. If no such object exists, the map should be * "wrapped" using the <tt>Collections.synchronizedMap</tt> method. This is * best done at creation time, to prevent accidental unsynchronized access to * the map: <pre> Map m = Collections.synchronizedMap(new HashMap(...)); * </pre> * * <p>The iterators returned by all of this class's "collection view methods" * are <i>fail-fast</i>: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> or <tt>add</tt> methods, the iterator will throw a * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../guide/collections/index.html"> * Java Collections Framework</a>. * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @version 1.57, 01/23/03 * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */public class HashMap extends AbstractMap implements Map, Cloneable, Serializable{ /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. **/ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table; /** * The number of key-value mappings contained in this identity hash map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient volatile int modCount; /** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and load factor. * * @param initialCapacity The initial capacity. * @param loadFactor The load factor. * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive. */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } /** * Constructs a new <tt>HashMap</tt> with the same mappings as the * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified <tt>Map</tt>. * * @param m the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. */ public HashMap(Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after HashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ void init() { } /** * Value representing null keys inside tables. */ static final Object NULL_KEY = new Object(); /** * Returns internal representation for key. Use NULL_KEY if key is null. */ static Object maskNull(Object key) { return (key == null ? NULL_KEY : key); } /** * Returns key represented by specified internal representation. */ static Object unmaskNull(Object key) { return (key == NULL_KEY ? null : key); } /** * Returns a hash value for the specified object. In addition to * the object's own hashCode, this method applies a "supplemental * hash function," which defends against poor quality hash functions. * This is critical because HashMap uses power-of two length * hash tables.<p> * * The shift distances in this function were chosen as the result * of an automated search over the entire four-dimensional search space. */ static int hash(Object x) { int h = x.hashCode(); h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } /** * Check for equality of non-null reference x and possibly-null y. */ static boolean eq(Object x, Object y) { return x == y || x.equals(y); } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map. */ public int size() { return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings. */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped in this identity * hash map, or <tt>null</tt> if the map contains no mapping for this key. * A return value of <tt>null</tt> does not <i>necessarily</i> indicate * that the map contains no mapping for the key; it is also possible that * the map explicitly maps the key to <tt>null</tt>. The * <tt>containsKey</tt> method may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or * <tt>null</tt> if the map contains no mapping for this key. * @see #put(Object, Object) */ public Object get(Object key) { Object k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); Entry e = table[i]; while (true) { if (e == null) return e; if (e.hash == hash && eq(k, e.key)) return e.value; e = e.next; } } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { Object k = maskNull(key); int hash = hash(k);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -