📄 arrays.java
字号:
* @param fromIndex the index of the first element (inclusive) to be * sorted. * @param toIndex the index of the last element (exclusive) to be sorted. * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or * <tt>toIndex > a.length</tt> */ public static void sort(float[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); sort2(a, fromIndex, toIndex); } private static void sort2(double a[], int fromIndex, int toIndex) { final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d); /* * The sort is done in three phases to avoid the expense of using * NaN and -0.0 aware comparisons during the main sort. */ /* * Preprocessing phase: Move any NaN's to end of array, count the * number of -0.0's, and turn them into 0.0's. */ int numNegZeros = 0; int i = fromIndex, n = toIndex; while(i < n) { if (a[i] != a[i]) { double swap = a[i]; a[i] = a[--n]; a[n] = swap; } else { if (a[i]==0 && Double.doubleToLongBits(a[i])==NEG_ZERO_BITS) { a[i] = 0.0d; numNegZeros++; } i++; } } // Main sort phase: quicksort everything but the NaN's sort1(a, fromIndex, n-fromIndex); // Postprocessing phase: change 0.0's to -0.0's as required if (numNegZeros != 0) { int j = binarySearch(a, 0.0d, fromIndex, n-1); // posn of ANY zero do { j--; } while (j>=0 && a[j]==0.0d); // j is now one less than the index of the FIRST zero for (int k=0; k<numNegZeros; k++) a[++j] = -0.0d; } } private static void sort2(float a[], int fromIndex, int toIndex) { final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f); /* * The sort is done in three phases to avoid the expense of using * NaN and -0.0 aware comparisons during the main sort. */ /* * Preprocessing phase: Move any NaN's to end of array, count the * number of -0.0's, and turn them into 0.0's. */ int numNegZeros = 0; int i = fromIndex, n = toIndex; while(i < n) { if (a[i] != a[i]) { float swap = a[i]; a[i] = a[--n]; a[n] = swap; } else { if (a[i]==0 && Float.floatToIntBits(a[i])==NEG_ZERO_BITS) { a[i] = 0.0f; numNegZeros++; } i++; } } // Main sort phase: quicksort everything but the NaN's sort1(a, fromIndex, n-fromIndex); // Postprocessing phase: change 0.0's to -0.0's as required if (numNegZeros != 0) { int j = binarySearch(a, 0.0f, fromIndex, n-1); // posn of ANY zero do { j--; } while (j>=0 && a[j]==0.0f); // j is now one less than the index of the FIRST zero for (int k=0; k<numNegZeros; k++) a[++j] = -0.0f; } } /* * The code for each of the seven primitive types is largely identical. * C'est la vie. */ /** * Sorts the specified sub-array of longs into ascending order. */ private static void sort1(long x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } long v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(long x[], int a, int b) { long t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(long x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed longs. */ private static int med3(long x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of integers into ascending order. */ private static void sort1(int x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } int v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(int x[], int a, int b) { int t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(int x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed integers. */ private static int med3(int x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of shorts into ascending order. */ private static void sort1(short x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len/8; l = med3(x, l, l+s, l+2*s); m = med3(x, m-s, m, m+s); n = med3(x, n-2*s, n-s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } short v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while(true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s); s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s); // Recursively sort non-partition-elements if ((s = b-a) > 1) sort1(x, off, s); if ((s = d-c) > 1) sort1(x, n-s, s); } /** * Swaps x[a] with x[b]. */ private static void swap(short x[], int a, int b) { short t = x[a]; x[a] = x[b]; x[b] = t; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecswap(short x[], int a, int b, int n) { for (int i=0; i<n; i++, a++, b++) swap(x, a, b); } /** * Returns the index of the median of the three indexed shorts. */ private static int med3(short x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } /** * Sorts the specified sub-array of chars into ascending order. */ private static void sort1(char x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i=off; i<len+off; i++) for (int j=i; j>off && x[j-1]>x[j]; j--) swap(x, j, j-1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -