📄 decimalformat.java
字号:
else if (obj instanceof Number) { format(((Number)obj).doubleValue(), sb, delegate); } else { throw new IllegalArgumentException( "Cannot format given Object as a Number"); } return delegate.getIterator(sb.toString()); } /** * Complete the formatting of a finite number. On entry, the digitList must * be filled in with the correct digits. */ private StringBuffer subformat(StringBuffer result, FieldDelegate delegate, boolean isNegative, boolean isInteger) { // NOTE: This isn't required anymore because DigitList takes care of this. // // // The negative of the exponent represents the number of leading // // zeros between the decimal and the first non-zero digit, for // // a value < 0.1 (e.g., for 0.00123, -fExponent == 2). If this // // is more than the maximum fraction digits, then we have an underflow // // for the printed representation. We recognize this here and set // // the DigitList representation to zero in this situation. // // if (-digitList.decimalAt >= getMaximumFractionDigits()) // { // digitList.count = 0; // } char zero = symbols.getZeroDigit(); int zeroDelta = zero - '0'; // '0' is the DigitList representation of zero char grouping = symbols.getGroupingSeparator(); char decimal = isCurrencyFormat ? symbols.getMonetaryDecimalSeparator() : symbols.getDecimalSeparator(); /* Per bug 4147706, DecimalFormat must respect the sign of numbers which * format as zero. This allows sensible computations and preserves * relations such as signum(1/x) = signum(x), where x is +Infinity or * -Infinity. Prior to this fix, we always formatted zero values as if * they were positive. Liu 7/6/98. */ if (digitList.isZero()) { digitList.decimalAt = 0; // Normalize } int fieldStart = result.length(); if (isNegative) { append(result, negativePrefix, delegate, getNegativePrefixFieldPositions(), Field.SIGN); } else { append(result, positivePrefix, delegate, getPositivePrefixFieldPositions(), Field.SIGN); } if (useExponentialNotation) { int iFieldStart = result.length(); int iFieldEnd = -1; int fFieldStart = -1; // Minimum integer digits are handled in exponential format by // adjusting the exponent. For example, 0.01234 with 3 minimum // integer digits is "123.4E-4". // Maximum integer digits are interpreted as indicating the // repeating range. This is useful for engineering notation, in // which the exponent is restricted to a multiple of 3. For // example, 0.01234 with 3 maximum integer digits is "12.34e-3". // If maximum integer digits are > 1 and are larger than // minimum integer digits, then minimum integer digits are // ignored. int exponent = digitList.decimalAt; int repeat = getMaximumIntegerDigits(); int minimumIntegerDigits = getMinimumIntegerDigits(); if (repeat > 1 && repeat > minimumIntegerDigits) { // A repeating range is defined; adjust to it as follows. // If repeat == 3, we have 6,5,4=>3; 3,2,1=>0; 0,-1,-2=>-3; // -3,-4,-5=>-6, etc. This takes into account that the // exponent we have here is off by one from what we expect; // it is for the format 0.MMMMMx10^n. if (exponent >= 1) { exponent = ((exponent - 1) / repeat) * repeat; } else { // integer division rounds towards 0 exponent = ((exponent - repeat) / repeat) * repeat; } minimumIntegerDigits = 1; } else { // No repeating range is defined; use minimum integer digits. exponent -= minimumIntegerDigits; } // We now output a minimum number of digits, and more if there // are more digits, up to the maximum number of digits. We // place the decimal point after the "integer" digits, which // are the first (decimalAt - exponent) digits. int minimumDigits = getMinimumIntegerDigits() + getMinimumFractionDigits(); // The number of integer digits is handled specially if the number // is zero, since then there may be no digits. int integerDigits = digitList.isZero() ? minimumIntegerDigits : digitList.decimalAt - exponent; if (minimumDigits < integerDigits) { minimumDigits = integerDigits; } int totalDigits = digitList.count; if (minimumDigits > totalDigits) totalDigits = minimumDigits; boolean addedDecimalSeparator = false; for (int i=0; i<totalDigits; ++i) { if (i == integerDigits) { // Record field information for caller. iFieldEnd = result.length(); result.append(decimal); addedDecimalSeparator = true; // Record field information for caller. fFieldStart = result.length(); } result.append((i < digitList.count) ? (char)(digitList.digits[i] + zeroDelta) : zero); } // Record field information if (iFieldEnd == -1) { iFieldEnd = result.length(); } delegate.formatted(INTEGER_FIELD, Field.INTEGER, Field.INTEGER, iFieldStart, iFieldEnd, result); if (addedDecimalSeparator) { delegate.formatted(Field.DECIMAL_SEPARATOR, Field.DECIMAL_SEPARATOR, iFieldEnd, fFieldStart, result); } if (fFieldStart == -1) { fFieldStart = result.length(); } delegate.formatted(FRACTION_FIELD, Field.FRACTION, Field.FRACTION, fFieldStart, result.length(), result); // The exponent is output using the pattern-specified minimum // exponent digits. There is no maximum limit to the exponent // digits, since truncating the exponent would result in an // unacceptable inaccuracy. fieldStart = result.length(); result.append(symbols.getExponentialSymbol()); delegate.formatted(Field.EXPONENT_SYMBOL, Field.EXPONENT_SYMBOL, fieldStart, result.length(), result); // For zero values, we force the exponent to zero. We // must do this here, and not earlier, because the value // is used to determine integer digit count above. if (digitList.isZero()) exponent = 0; boolean negativeExponent = exponent < 0; if (negativeExponent) { exponent = -exponent; append(result, negativePrefix, delegate, getNegativePrefixFieldPositions(), Field.EXPONENT_SIGN); } else { append(result, positivePrefix, delegate, getPositivePrefixFieldPositions(), Field.EXPONENT_SIGN); } digitList.set(exponent); int eFieldStart = result.length(); for (int i=digitList.decimalAt; i<minExponentDigits; ++i) result.append(zero); for (int i=0; i<digitList.decimalAt; ++i) { result.append((i < digitList.count) ? (char)(digitList.digits[i] + zeroDelta) : zero); } delegate.formatted(Field.EXPONENT, Field.EXPONENT, eFieldStart, result.length(), result); fieldStart = result.length(); if (negativeExponent) { append(result, negativeSuffix, delegate, getNegativeSuffixFieldPositions(), Field.EXPONENT_SIGN); } else { append(result, positiveSuffix, delegate, getPositiveSuffixFieldPositions(), Field.EXPONENT_SIGN); } } else { int iFieldStart = result.length(); // Output the integer portion. Here 'count' is the total // number of integer digits we will display, including both // leading zeros required to satisfy getMinimumIntegerDigits, // and actual digits present in the number. int count = getMinimumIntegerDigits(); int digitIndex = 0; // Index into digitList.fDigits[] if (digitList.decimalAt > 0 && count < digitList.decimalAt) count = digitList.decimalAt; // Handle the case where getMaximumIntegerDigits() is smaller // than the real number of integer digits. If this is so, we // output the least significant max integer digits. For example, // the value 1997 printed with 2 max integer digits is just "97". if (count > getMaximumIntegerDigits()) { count = getMaximumIntegerDigits(); digitIndex = digitList.decimalAt - count; } int sizeBeforeIntegerPart = result.length(); for (int i=count-1; i>=0; --i) { if (i < digitList.decimalAt && digitIndex < digitList.count) { // Output a real digit result.append((char)(digitList.digits[digitIndex++] + zeroDelta)); } else { // Output a leading zero result.append(zero); } // Output grouping separator if necessary. Don't output a // grouping separator if i==0 though; that's at the end of // the integer part. if (isGroupingUsed() && i>0 && (groupingSize != 0) && (i % groupingSize == 0)) { int gStart = result.length(); result.append(grouping); delegate.formatted(Field.GROUPING_SEPARATOR, Field.GROUPING_SEPARATOR, gStart, result.length(), result); } } // Determine whether or not there are any printable fractional // digits. If we've used up the digits we know there aren't. boolean fractionPresent = (getMinimumFractionDigits() > 0) || (!isInteger && digitIndex < digitList.count); // If there is no fraction present, and we haven't printed any // integer digits, then print a zero. Otherwise we won't print // _any_ digits, and we won't be able to parse this string. if (!fractionPresent && result.length() == sizeBeforeIntegerPart) { result.append(zero); } delegate.formatted(INTEGER_FIELD, Field.INTEGER, Field.INTEGER, iFieldStart, result.length(), result); // Output the decimal separator if we always do so. int sStart = result.length(); if (decimalSeparatorAlwaysShown || fractionPresent) result.append(decimal); if (sStart != result.length()) { delegate.formatted(Field.DECIMAL_SEPARATOR, Field.DECIMAL_SEPARATOR, sStart, result.length(), result); } int fFieldStart = result.length(); for (int i=0; i < getMaximumFractionDigits(); ++i) { // Here is where we escape from the loop. We escape if we've output // the maximum fraction digits (specified in the for expression above). // We also stop when we've output the minimum digits and either: // we have an integer, so there is no fractional stuff to display, // or we're out of significant digits. if (i >= getMinimumFractionDigits() && (isInteger || digitIndex >= digitList.count)) break; // Output leading fractional zeros. These are zeros that come after // the decimal but before any significant digits. These are only // output if abs(number being formatted) < 1.0. if (-1-i > (digitList.decimalAt-1)) { result.append(zero); continue; } // Output a digit, if we have any precision left, or a // zero if we don't. We don't want to output noise digits. if (!isInteger && digitIndex < digitList.count) { result.append((char)(digitList.digits[digitIndex++] + zeroDelta)); } else { result.append(zero); } } // Record field information for caller. delegate.formatted(FRACTION_FIELD, Field.FRACTION, Field.FRACTION, fFieldStart, result.length(), result); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -