📄 fs_con_n.m
字号:
%% compute reduct from numerical data, categorical data and their mixtures with neighborhood rough sets.
%% two kinds of neighborhood are used: crisp and fuzzy.
%% Variable precision neighborhood lower approximations are used to compute dependency between conditions and decision.
%% dependency is employed as the heuristic rule.
function [select_feature,attr_sig]=fs_con_N(data,neighbor)
%%input
%%%input:
% data is data matrix, where rows for samples and columns for attributes.
% Numerical attributes should be normalized into [0,1] and decision attribute is put in the last column
% neighborhood means the radius of neighborhood, usually takes value in [0.05 0.5]
%%%output
% a reduct--- the set of selected attributes.
[row column]=size(data);
classnum=max(data(:,column));
%%%%%%%%%%%%%compute relation matrices with a single attribute%%%%%%%%%
for i=1:column
col=i;
r=[];
eval(['ssr' num2str(col) '=[];']);
for j=1:row
a=data(j,col);
x=data(:,col);
for m=1:length(x)
r(j,m)=kersim_crisp(a,x(m),neighbor);
end
end
eval(['ssr' num2str(col) '=r;']);
end
%%%%%%%%%%%%search reduct with a forward greedy strategy%%%%%%%%%%%%%%%%%%%%%%%
n=[];
x=0;
base=ones(row);
r=eval(['ssr' num2str(column)]);
attrinu=column-1;
for j=attrinu:-1:1
sig=[];
for l=1:attrinu
r2=eval(['ssr' num2str(l)]);
r1=min(r2,base);
importance=0;
temp=[];
for i=1:row
temp=r1(i,:);
neighbor_loc=find(temp==1);
label_value_N=data(neighbor_loc,column);
for class_i=1:classnum
class_i_num_N(class_i)=length(find(label_value_N==class_i));
end
[value,real_class]=max(class_i_num_N);
if (data(i,column)==real_class)
importance=importance+1;
end
end
sig(l)=importance/row;
end
[x1,n1]=max(sig);
x=[x;x1];
len=length(x);
if abs(x(len)-x(len-1))>0.001
base1=eval(['ssr' num2str(n1)]);
base=min(base,base1);
n=[n;n1];
else
break
end
end
attr_sig=x(2:(length(x)-1));
select_feature=n;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -