📄 iec16022ecc200.c
字号:
if (!sub && sl)
{ // can encode Text
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t && ((t = enc[p + sl][e].t + switchcost[E_TEXT][e]) < bl || !bl))
{
bl = t;
b = e;
}
if (exact && enc[p + sl][E_ASCII].t == 1 && 1 < bl)
{ // special case, switch to ASCII for last bytes
bl = 1;
b = E_ASCII;
}
enc[p][E_TEXT].t = tl + bl;
enc[p][E_TEXT].s = sl;
if (bl && b == E_TEXT)
enc[p][b].s += enc[p + sl][b].s;
}
// X12
sub = tl = sl = 0;
do
{
unsigned char c = s[p + sl++];
if (c != 13 && c != '*' && c != '>' && c != ' ' && !isdigit (c) && !isupper (c))
{
sl = 0;
break;
}
sub++;
while (sub >= 3)
{
sub -= 3;
tl += 2;
}
} while (sub && p + sl < l);
if (!sub && sl)
{ // can encode X12
bl = 0;
if (p + sl < l)
for (e = 0; e < E_MAX; e++)
if (enc[p + sl][e].t && ((t = enc[p + sl][e].t + switchcost[E_X12][e]) < bl || !bl))
{
bl = t;
b = e;
}
if (exact && enc[p + sl][E_ASCII].t == 1 && 1 < bl)
{ // special case, switch to ASCII for last bytes
bl = 1;
b = E_ASCII;
}
enc[p][E_X12].t = tl + bl;
enc[p][E_X12].s = sl;
if (bl && b == E_X12)
enc[p][b].s += enc[p + sl][b].s;
}
// EDIFACT
sl = bl = 0;
if (s[p + 0] >= 32 && s[p + 0] <= 94)
{ // can encode 1
char bs = 0;
if (p + 1 == l && (!bl || bl < 2))
{
bl = 2;
bs = 1;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT && enc[p + 1][e].t && ((t = 2 + enc[p + 1][e].t + switchcost[E_ASCII][e]) < bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 1;
bl = t;
b = e;
}
if (p + 1 < l && s[p + 1] >= 32 && s[p + 1] <= 94)
{ // can encode 2
if (p + 2 == l && (!bl || bl < 2))
{
bl = 3;
bs = 2;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT && enc[p + 2][e].t && ((t = 3 + enc[p + 2][e].t + switchcost[E_ASCII][e]) < bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 2;
bl = t;
b = e;
}
if (p + 2 < l && s[p + 2] >= 32 && s[p + 2] <= 94)
{ // can encode 3
if (p + 3 == l && (!bl || bl < 3))
{
bl = 3;
bs = 3;
} else
for (e = 0; e < E_MAX; e++)
if (e != E_EDIFACT && enc[p + 3][e].t && ((t = 3 + enc[p + 3][e].t + switchcost[E_ASCII][e]) < bl || !bl)) // E_ASCII as allowed for unlatch
{
bs = 3;
bl = t;
b = e;
}
if (p + 4 < l && s[p + 3] >= 32 && s[p + 3] <= 94)
{ // can encode 4
if (p + 4 == l && (!bl || bl < 3))
{
bl = 3;
bs = 4;
} else
{
for (e = 0; e < E_MAX; e++)
if (enc[p + 4][e].t && ((t = 3 + enc[p + 4][e].t + switchcost[E_EDIFACT][e]) < bl || !bl))
{
bs = 4;
bl = t;
b = e;
}
if (exact && enc[p + 4][E_ASCII].t && enc[p + 4][E_ASCII].t <= 2 && (t = 3 + enc[p + 4][E_ASCII].t) < bl)
{ // special case, switch to ASCII for last 1 ot two bytes
bs = 4;
bl = t;
b = E_ASCII;
}
}
}
}
}
enc[p][E_EDIFACT].t = bl;
enc[p][E_EDIFACT].s = bs;
if (bl && b == E_EDIFACT)
enc[p][b].s += enc[p + bs][b].s;
}
// Binary
bl = 0;
for (e = 0; e < E_MAX; e++)
if (enc[p + 1][e].t
&& ((t = enc[p + 1][e].t + switchcost[E_BINARY][e] + ((e == E_BINARY && enc[p + 1][e].t == 249) ? 1 : 0)) < bl || !bl))
{
bl = t;
b = e;
}
enc[p][E_BINARY].t = 1 + bl;
enc[p][E_BINARY].s = 1;
if (bl && b == E_BINARY)
enc[p][b].s += enc[p + 1][b].s;
//fprintf (stderr, "%d:", p); for (e = 0; e < E_MAX; e++) fprintf (stderr, " %c*%d/%d", encchr[e], enc[p][e].s, enc[p][e].t); fprintf (stderr, "\n");
}
encoding = safemalloc (l + 1);
p = 0;
{
char cur = E_ASCII; // starts ASCII
while (p < l)
{
int t,
m = 0;
char b = 0;
for (e = 0; e < E_MAX; e++)
if (enc[p][e].t && ((t = enc[p][e].t + switchcost[cur][e]) < m || t == m && e == cur || !m))
{
b = e;
m = t;
}
cur = b;
m = enc[p][b].s;
if (!p && lenp)
*lenp = enc[p][b].t;
while (p < l && m--)
encoding[p++] = encchr[b];
}
}
encoding[p] = 0;
return encoding;
}
// Main encoding function
// Returns the grid (malloced) containing the matrix. L corner at 0,0.
// Takes suggested size in *Wptr, *Hptr, or 0,0. Fills in actual size.
// Takes barcodelen and barcode to be encoded
// Note, if *encodingptr is null, then fills with auto picked (malloced) encoding
// If lenp not null, then the length of encoded data before any final unlatch or pad is stored
// If maxp not null, then the max storage of this size code is stored
// If eccp not null, then the number of ecc bytes used in this size is stored
// Returns 0 on error (writes to stderr with details).
unsigned char *
iec16022ecc200 (int *Wptr, int *Hptr, char **encodingptr, int barcodelen, unsigned char *barcode, int *lenp, int *maxp, int *eccp)
{
unsigned char binary[3000]; // encoded raw data and ecc to place in barcode
int W = 0,
H = 0;
char *encoding = 0;
unsigned char *grid = 0;
struct ecc200matrix_s *matrix;
memset (binary, 0, sizeof (binary));
if (encodingptr)
encoding = *encodingptr;
if (Wptr)
W = *Wptr;
if (Hptr)
H = *Hptr;
// encoding
if (W)
{ // known size
for (matrix = ecc200matrix; matrix->W && (matrix->W != W || matrix->H != H); matrix++);
if (!matrix->W)
{
fprintf (stderr, "Invalid size %dx%d\n", W, H);
return 0;
}
if (!encoding)
{
int len;
char *e = encmake (barcodelen, barcode, &len, 1);
if (e && len != matrix->bytes)
{ // try not an exact fit
free (e);
e = encmake (barcodelen, barcode, &len, 0);
if (len > matrix->bytes)
{
fprintf (stderr, "Cannot make barcode fit %dx%d\n", W, H);
return 0;
}
}
encoding = e;
}
} else
{ // find size
if (encoding)
{ // find one that fits chosen encoding
for (matrix = ecc200matrix; matrix->W; matrix++)
if (ecc200encode (binary, matrix->bytes, barcode, barcodelen, encoding, 0))
break;
} else
{
int len;
char *e;
e = encmake (barcodelen, barcode, &len, 1);
for (matrix = ecc200matrix; matrix->W && matrix->bytes != len; matrix++);
if (e && !matrix->W)
{ // try for non exact fit
free (e);
e = encmake (barcodelen, barcode, &len, 0);
for (matrix = ecc200matrix; matrix->W && matrix->bytes < len; matrix++);
}
encoding = e;
}
if (!matrix->W)
{
fprintf (stderr, "Cannot find suitable size, barcode too long\n");
return 0;
}
W = matrix->W;
H = matrix->H;
}
if (!ecc200encode (binary, matrix->bytes, barcode, barcodelen, encoding, lenp))
{
fprintf (stderr, "Barcode too long for %dx%d\n", W, H);
return 0;
}
// ecc code
ecc200 (binary, matrix->bytes, matrix->datablock, matrix->rsblock);
{ // placement
int x,
y,
NC,
NR,
*places;
NC = W - 2 * (W / matrix->FW);
NR = H - 2 * (H / matrix->FH);
places = safemalloc (NC * NR * sizeof (int));
ecc200placement (places, NR, NC);
grid = safemalloc (W * H);
memset (grid, 0, W * H);
for (y = 0; y < H; y += matrix->FH)
{
for (x = 0; x < W; x++)
grid[y * W + x] = 1;
for (x = 0; x < W; x += 2)
grid[(y + matrix->FH - 1) * W + x] = 1;
}
for (x = 0; x < W; x += matrix->FW)
{
for (y = 0; y < H; y++)
grid[y * W + x] = 1;
for (y = 0; y < H; y += 2)
grid[y * W + x + matrix->FW - 1] = 1;
}
for (y = 0; y < NR; y++)
{
for (x = 0; x < NC; x++)
{
int v = places[(NR - y - 1) * NC + x];
//fprintf (stderr, "%4d", v);
if (v == 1 || v > 7 && (binary[(v >> 3) - 1] & (1 << (v & 7))))
grid[(1 + y + 2 * (y / (matrix->FH - 2))) * W + 1 + x + 2 * (x / (matrix->FW - 2))] = 1;
}
//fprintf (stderr, "\n");
}
free (places);
}
if (Wptr)
*Wptr = W;
if (Hptr)
*Hptr = H;
if (encodingptr)
*encodingptr = encoding;
if (maxp)
*maxp = matrix->bytes;
if (eccp)
*eccp = (matrix->bytes + 2) / matrix->datablock * matrix->rsblock;
return grid;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -