📄 featselmargin.m
字号:
function [RankedVariables,nbsv,values]=FeatSelmargin(x,y,c,kernel,kerneloption,verbose,span,FeatSeloption)
% Usage
%
% [RankedVariables,nbsv,values]=FeatSelmargin(x,y,c,kernel,kerneloption,verbose,span,FeatSeloption)
%
%
% x,y : input data
% c : penalization of misclassified examples
% kernel : kernel type
% kerneloption : kernel hyperparameters
% verbose
% span : matrix for semiparametric learning
% FeatSeloption : structure containing FeatSeloption parameters
% Fields
%
% AlphaApprox : O for retraining , 1 for approximation
% RemoveChunks : number of variable to remove (a number or 'half')
% StopChunks : remove 1 variable at a time when number of variables reaches this value
% FirstOrderMethod : how to calculate the derivatives
% 'grad','scal', 'absgrad', 'absscal'
%
%
%
% alain.rakoto@insa-rouen.fr
%
% \bibitem[Rakotomamonjy(2002)]{rakoto_featsel}
% A.~Rakotomamonjy.
% \newblock Variable selection using svm based criteria.
% \newblock Technical Report 02-004, Insa de Rouen Perception Syst\`eme
% Informations, http://asi.insa-rouen.fr/\char126arakotom, 2002.
%
if nargin <8
FeatSeloption.AlphaApprox=1;
end;
%----------------------------------------------------------%
% Testing Fields Existence %
%----------------------------------------------------------%
if ~isfield(FeatSeloption,'AlphaApprox')
FeatSeloption.AlphaApprox=1;
end;
if ~isfield(FeatSeloption,'RemoveChunks')
FeatSeloption.RemoveChunks=1;
end;
if ~isfield(FeatSeloption,'StopChunks')
FeatSeloption.StopChunks=10;
end;
if strcmp(FeatSeloption.RemoveChunks,'half')
half=1;
else
half=0;
end;
caux=diag((1/c)*ones(length(y),1));
SelectedVariables = [1:size(x,2)]; %list of remaining variable
EliminatedVariables = []; %list of elimanted variables
alphaall=[];
betaall=[];
nbsv=[];
values=[];
while length(SelectedVariables)~=0
length(SelectedVariables);
if half==1
FeatSeloption.RemoveChunks=round(length(SelectedVariables)/2);
end;
if FeatSeloption.RemoveChunks<=FeatSeloption.StopChunks/2 & half == 1
FeatSeloption.RemoveChunks=1;
end;
if length(SelectedVariables)<=FeatSeloption.StopChunks
FeatSeloption.RemoveChunks=1;
end;
xaux=x(:,SelectedVariables);
ps=svmkernel(xaux,kernel,kerneloption);
lambd=1e-7;
psc=ps+caux;
H =psc.*(y*y');
e = ones(size(y));
A = y;
b = 0;
[alpha , lambda , pos] = monqpCinfty(H,e,A,b,lambd,verbose,x,psc,alphaall);
alphaall=zeros(size(e));
alphaall(pos)=alpha;
nbsv=[length(pos) nbsv];
SelectVariablesAux=SelectedVariables;
w2=[];
alphatemp=alpha;
for i=1:length(SelectedVariables)
SelectVariablesAux=SelectedVariables;
if FeatSeloption.AlphaApprox
caux1=caux(pos,pos);
SelectVariablesAux(i)=[];
xnon2 = x(pos,SelectVariablesAux);
psnon=svmkernel(xnon2,kernel,kerneloption)+caux1;
%------------------------------------------------------------
Hnon=psnon.*(y(pos)*y(pos)');
w2aux=(-0.5*alphaall(pos)'*Hnon*alphaall(pos) +e(pos)'*alphaall(pos));
w2(i)=w2aux;
else
SelectVariablesAux(i)=[];
xnon2 = x(:,SelectVariablesAux);
psnon=svmkernel(xnon2,kernel,kerneloption)+caux;
Hnon=psnon.*(y*y');
[alphatemp , lambda , pos] = monqpCinfty(Hnon,e,A,b,lambd,verbose,x,psnon,alphatemp);
alphaaux=zeros(size(e));
alphaaux(pos)=alphatemp;
w2aux=(-0.5*alphaaux(pos)'*Hnon(pos,pos)*alphaaux(pos) +e(pos)'*alphaaux(pos));
w2(i)=w2aux;
end;
end
[nointerest indiceDJ] = sort(w2);
EliminatedVariables = [SelectedVariables(indiceDJ(1:FeatSeloption.RemoveChunks)) EliminatedVariables];
values= [w2(indiceDJ(1:FeatSeloption.RemoveChunks)) values];
SelectedVariables(indiceDJ(1:FeatSeloption.RemoveChunks)) = [];
end;
RankedVariables=[ EliminatedVariables ];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -