⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svmroc.m

📁 基于核分析的多类分类器
💻 M
字号:
function [xsup,w,w0,pos,timeps,alpha,matriceind]=svmroc(x,y,C,kppv,margin,lambda,kernel,kerneloption,verbose,span,qpsize,kkttol,matriceind,alphainit);% USAGE% % [xsup,w,w0,pos,timeps,alpha,matriceind]=svmroc(x,y,C,kppv,margin,lambda,kernel,kerneloption,verbose,span,qpsize,matriceind)%%% SVM ROC Optimizer that can handle LS problem and large neighboorhood. This% algorithm uses a decomposition procedure.%%  x y          the learning data and labels%  C            penalization parameters%  kppv         the number of neighboor to consider. choose kppv=inf for%               genuine ROC-SVM with no approx.%  margin       the margin for ranking%  lambda       conditioning parameter for the qp problem e.g 1e-7%  kernel       the kernel type e.g 'gaussian' or 'poly'%  kerneloption kernel parameters%  verbose      verbosity of the algo 0 or 1%  span         type of semi parametric function e.g 1%  qpsize       size of qp algorithm%%% Outputs as usual for SVM except that xsup is a cell containing% the couple of positive and negative support vectors.% % see also svmrocval%% % 30/07/2004 A. Rakotomamonjyif nargin< 14    alphainit=[];end;if nargin< 13    matriceind=[];end;if nargin< 12    kkttol=1e-4;end;if size(alphainit,1)~=size(matriceind,1)    error('matriceind and alphainit initialization size mismatch...');end;iteration=0;difftol=1e-7;chunksize=qpsize;indpos=find(y==1);indneg=find(y==-1);nbpos=length(indpos);nbneg=length(indneg);timeps=0;%-------------------------------------------------------------------------%% dist in feature space of each positive example to negative examples%% the idea here is to select a subset of couple for% optimizing the ranking%% % CASE 1 : select only the k-nearest negative neighbor of positive examplesif isempty(matriceind);    if kppv~=inf        for i=1:nbpos+nbneg            norme2(i)=svmkernel(x(i,:),kernel,kerneloption);        end;                matriceindneg=[];        % select only the k-nearest positive neighbor of negative xamples        for i=1:nbneg            aux1=svmkernel(x(indneg(i),:),kernel,kerneloption,x(indpos,:));            dist=norme2(indneg(i))*ones(1,nbpos) + norme2(indpos) - 2*aux1 ;            [aux,indicesorted]=sort(dist');            minim=min(length(indicesorted),kppv);            matriceindneg=[matriceindneg; i*ones(minim,1) indicesorted(1:minim)];        end;        vect=unique(matriceindneg(:,2));         % process only these couples of nn of these positive samples.        dist=[];        matriceind=[];        for i=1:length(vect)            aux1=svmkernel(x(indpos(vect(i)),:),kernel,kerneloption,x(indneg,:));            dist=norme2(indpos(vect(i)))*ones(1,nbneg) + norme2(indneg) - 2*aux1 ;            [aux,indicesorted]=sort(dist');            minim=min(length(indicesorted),kppv);            matriceind=[matriceind; vect(i)*ones(minim,1) indicesorted(1:minim)];        end;            else   % Select all couples        %         k=1;        %         for i=1:nbneg        %             for j=1:nbpos        %                 matriceind(k,:)=[j i];        %                 k=k+1;            %             end;        %         end;                [aux1 aux2]  = meshgrid(1:nbpos,1:nbneg);         [nn1,nn2]= size(aux1);         matriceind = [reshape(aux1 ,nn1*nn2,1) reshape(aux2 ,nn1*nn2,1)];             end;end;taille=length(matriceind);%--------Matrice stocke la liste des couples de points 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -