📄 spanestimate.m
字号:
function loo = spanestimate(x,y,kernel,kerneloption,alpha,pos,b,C);
% USAGE
%
% loo = spanestimate(x,y,kernel,kerneloption,alpha,pos,b,C);
%
% gives an estimate of the LOO error of a soft margin SVM
%
% x and y are the training examples and their labels
% kernel, kerneloption define the kernel and its parameters (this is used only for
% processing the Gram Matrix of the training data
% alpha,pos define the lagrangian multiplier associated to the SVM
% b the bias of the SVM
% C penalization coefficient.
if ~strcmp(kernel,'numerical')
K=svmkernel(x,kernel,kerneloption);
else
K=kerneloption.matrix;
end
alpha1=zeros(size(y));
alpha1(pos)=alpha;
output= y.*(K*(alpha1.*y)+b);
eps=1e-5;
sv1=find(alpha1>max(alpha1)*eps & alpha1 < C*(1-eps));
sv2=find(alpha1 > C*(1-eps));
if isempty(sv1)
loo=mean(output<0);
return
end;
ell=length(sv1);
KSV=[K(sv1,sv1) ones(ell,1);[ones(1,ell) 0]];
invKSV=inv(KSV+diag(1e-12*[ones(1,ell) 0]));
n=length(K);
span=zeros(n,1);
tmp=diag(invKSV);
span(sv1)=1./tmp(1:ell);
if ~isempty(sv2);
V=[K(sv1,sv2); ones(1,length(sv2))];
span(sv2)=diag(K(sv2,sv2))-diag(V'*invKSV*V);
end;
loo=mean(output-alpha1.*span < 0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -