📄 cmvsoga.txt
字号:
current.fitness=current.fitness/sum;
cfitness.InsertAfter (cfitness .FindIndex(i),current.fitness);
}
for(i=1;i<popsize; i++)//概率值从小到大;
{
current.fitness=cfitness.GetAt (cfitness.FindIndex(i-1))
+cfitness.GetAt(cfitness.FindIndex(i)); //归一化
cfitness.SetAt (cfitness .FindIndex(i),current.fitness);
population.SetAt(population.FindIndex(i),current);
}
for (i=0;i<popsize;)//轮盘赌概率选择。本段还有问题。
{
p=double(rand()%999)/1000+0.0001; //随机生成概率
pindex=0; //遍历索引
pc=cfitness.GetAt(cfitness.FindIndex(1)); //为什么取不到数值???20060910
while(p>=pc&&pindex<popsize) //问题所在。
{
pc=cfitness.GetAt(cfitness .FindIndex(pindex));
pindex++;
}
//必须是从index~popsize,选择高概率的数。即大于概率p的数应该被选择,选择不满则进行下次选择。
for (j=popsize-1;j<pindex&&i<popsize;j--)
{
newpopulation.InsertAfter (newpopulation.FindIndex(0),
population.GetAt (population.FindIndex(j)));
i++;
}
}
for(i=0;i<popsize; i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
// j=newpopulation.GetCount();
// j=population.GetCount();
newpopulation.RemoveAll();
}
//current 变化后,以上没有问题了。
void CMVSOGA:: crossoveroperator() //非均匀算术线性交叉,浮点数适用,alpha ,beta是(0,1)之间的随机数
//对种群中两两交叉的个体选择也是随机选择的。也可取beta=1-alpha;
//current的变化会有一些改变。
{
int i,j;
double alpha,beta;
CList <int,int> index;
int point,temp;
double p;
// srand( (unsigned)time( NULL ) );
for (i=0;i<popsize;i++)//生成序号
{
index.InsertAfter (index.FindIndex(i),i);
}
for (i=0;i<popsize;i++)//打乱序号
{
point=rand()%(popsize-1);
temp=index.GetAt(index.FindIndex(i));
index.SetAt(index.FindIndex(i),
index.GetAt(index.FindIndex(point)));
index.SetAt(index.FindIndex(point),temp);
}
for (i=0;i<popsize-1;i+=2)
{//按顺序序号,按序号选择两个母体进行交叉操作。
p=double(rand()%10000)/10000.0;
if (p<crossoverrate)
{
alpha=double(rand()%10000)/10000.0;
beta=double(rand()%10000)/10000.0;
current=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i))));
current1=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i+1))));//临时使用current1代替
for(j=0;j<variablenum;j++)
{
//交叉
double sign;
sign=rand()%2;
if(sign)
{
current.chromosome[j]=(1-alpha)*current.chromosome[j]+
beta*current1.chromosome[j];
}
else
{
current.chromosome[j]=(1-alpha)*current.chromosome[j]-
beta*current1.chromosome[j];
}
if (current.chromosome[j]>variabletop[j]) //判断是否超界.
{
current.chromosome[j]=double(rand()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if (current.chromosome[j]<variablebottom [j])
{
current.chromosome[j]=double(rand()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if(sign)
{
current1.chromosome[j]=alpha*current.chromosome[j]+
(1- beta)*current1.chromosome[j];
}
else
{
current1.chromosome[j]=alpha*current.chromosome[j]-
(1- beta)*current1.chromosome[j];
}
if (current1.chromosome[j]>variabletop[j])
{
current1.chromosome[j]=double(rand()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if (current1.chromosome[j]<variablebottom [j])
{
current1.chromosome[j]=double(rand()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
}
//回代
}
newpopulation.InsertAfter (newpopulation.FindIndex(i),current);
newpopulation.InsertAfter (newpopulation.FindIndex(i),current1);
}
ASSERT(newpopulation.GetCount()==popsize);
for (i=0;i<popsize;i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
newpopulation.RemoveAll();
index.RemoveAll();
}
void CMVSOGA:: findbestandworstindividual( )
{
int i;
bestindividual=population.GetAt(population.FindIndex(best_index));
worstindividual=population.GetAt(population.FindIndex(worst_index));
for (i=1;i<popsize; i++)
{
current=population.GetAt(population.FindIndex(i));
if (current.fitness>bestindividual.fitness)
{
bestindividual=current;
best_index=i;
}
else if (current.fitness<worstindividual.fitness)
{
worstindividual=current;
worst_index=i;
}
}
population.SetAt(population.FindIndex(worst_index),
population.GetAt(population.FindIndex(best_index)));
//用最好的替代最差的。
if (maxgeneration==0)
{
currentbest=bestindividual;
}
else
{
if(bestindividual.fitness>=currentbest.fitness)
{
currentbest=bestindividual;
}
}
}
void CMVSOGA:: calculatefitnessvalue() //适应度函数值计算,关键是适应度函数的设计
//current变化,这段程序变化较大,特别是排序。
{
int i;
double temp;//alpha,beta;//适应度函数的尺度变化系数
double cmax=100;
for(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
if(current.value<cmax)
{
temp=cmax-current.value;
}
else
{
temp=0.0;
}
/*
if((population[i].value+cmin)>0.0)
{temp=cmin+population[i].value;}
else
{temp=0.0;
}
*/
current.fitness=temp;
population.SetAt(population.FindIndex(i),current);
}
}
void CMVSOGA:: performevolution() //演示评价结果,有冗余代码,current变化,程序应该改变较大
{
if (bestindividual.fitness>currentbest.fitness)
{
currentbest=population.GetAt(population.FindIndex(best_index));
}
else
{
population.SetAt(population.FindIndex(worst_index),currentbest);
}
}
void CMVSOGA::GetResult(double *Result)
{
int i;
for (i=0;i<variablenum;i++)
{
Result[i]=currentbest.chromosome[i];
}
Result[i]=currentbest.value;
}
void CMVSOGA::GetPopData(CList <double,double>&PopData)
{
PopData.RemoveAll();
int i,j;
for (i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
for (j=0;j<variablenum;j++)
{
PopData.AddTail(current.chromosome[j]);
}
}
}
void CMVSOGA::SetFitnessData(CList <double,double>&PopData,CList <double,double>&FitnessData,CList <double,double>&ValueData)
{
int i,j;
for (i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i)); //就因为这一句,出现了很大的问题。
for (j=0;j<variablenum;j++)
{
current.chromosome[j]=PopData.GetAt(PopData.FindIndex(i*variablenum+j));
}
current.fitness=FitnessData.GetAt(FitnessData.FindIndex(i));
current.value=ValueData.GetAt(ValueData.FindIndex(i));
population.SetAt(population.FindIndex(i),current);
}
FitnessData.RemoveAll();
PopData.RemoveAll();
ValueData.RemoveAll();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -