📄 am29lv065_8x1.c
字号:
/* am29lv065_8x1.c:
* Support for AMD 29lv065.
* An 8-bit device in a 1-device-wide bank.
*/
#include "config.h"
#if INCLUDE_FLASH
#include "stddefs.h"
#include "genlib.h"
#include "cpu.h"
#include "flash.h"
#include "am29lv065_8x1.h"
#define ftype volatile unsigned char
#define Read_0000() (*(ftype *)(fdev->base))
#define Read_0001() (*(ftype *)(fdev->base+1))
#define Is_ff(add) (*(ftype *)add == 0xff)
#define Is_not_ff(add) (*(ftype *)add != 0xff)
#define Is_Equal(p1,p2) (*(ftype *)p1 == *(ftype *)p2)
#define Is_Not_Equal(p1,p2) (*(ftype *)p1 != *(ftype *)p2)
#define D5_Timeout(add) ((*(ftype *)add & 0xdf) == 0x20)
#define SECTOR_ERASE(add) { \
(*(ftype *)(fdev->base+0x0555) = 0xaa); \
(*(ftype *)(fdev->base+0x02aa) = 0x55); \
(*(ftype *)(fdev->base+0x0555) = 0x80); \
(*(ftype *)(fdev->base+0x0555) = 0xaa); \
(*(ftype *)(fdev->base+0x02aa) = 0x55); \
(*(ftype *)add = 0x30); }
#define FLASH_WRITE(dest,src) { \
(*(ftype *)(fdev->base+0x0555) = 0xaa); \
(*(ftype *)(fdev->base+0x02aa) = 0x55); \
(*(ftype *)(fdev->base+0x0555) = 0xa0); \
(*(ftype *)dest = *(ftype *)src); }
#define AUTO_SELECT() { \
(*(ftype *)(fdev->base+0x0555) = 0xaa); \
(*(ftype *)(fdev->base+0x02aa) = 0x55); \
(*(ftype *)(fdev->base+0x0555) = 0x90); }
#define READ_RESET() { \
(*(ftype *)(fdev->base+0x0555) = 0xf0); }
/* Am29lv065_8x1_erase():
* Based on the 'snum' value, erase the appropriate sector(s).
* Return 0 if success, else -1.
*/
int
Am29lv065_8x1_erase(struct flashinfo *fdev,int snum)
{
ulong add;
int ret, sector;
ret = 0;
add = (ulong)(fdev->base);
/* Erase the request sector(s): */
for (sector=0;sector<fdev->sectorcnt;sector++) {
if ((!FlashProtectWindow) &&
(fdev->sectors[sector].protected)) {
add += fdev->sectors[sector].size;
continue;
}
if ((snum == ALL_SECTORS) || (snum == sector)) {
SECTOR_ERASE(add);
/* Wait for sector erase to complete or timeout..
* DQ7 polling: wait for D7 to be 1.
* DQ6 toggling: wait for D6 to not toggle.
* DQ5 timeout: if DQ7 is 0, and DQ5 = 1, timeout.
*/
while(1) {
if (Is_ff(add)) {
if (Is_ff(add))
break;
}
if (D5_Timeout(add)) {
if (Is_not_ff(add))
ret = -1;
break;
}
}
}
add += fdev->sectors[sector].size;
}
/* If the erase failed for some reason, then issue the read/reset
* command sequence prior to returning...
*/
if (ret == -1) {
READ_RESET();
}
return(ret);
}
/* EndAm29lv065_8x1_erase():
* Function place holder to determine the end of the above function.
*/
void
EndAm29lv065_8x1_erase(void)
{}
/* Am29lv065_8x1_write():
* Copy specified number of bytes from source to destination. The destination
* address is assumed to be flash space.
*/
int
Am29lv065_8x1_write(struct flashinfo *fdev,ftype *dest,ftype *src,long bytecnt)
{
int i, ret;
/* Each pass through this loop writes 'fdev->width' bytes...
*/
ret = 0;
for (i=0;i<bytecnt;i+=fdev->width) {
FLASH_WRITE(dest,src);
/* Wait for write to complete or timeout.
*/
while(1) {
if (Is_Equal(dest,src)) {
if (Is_Equal(dest,src))
break;
}
/* Check D5 for timeout...
*/
if (D5_Timeout(dest)) {
if (Is_Not_Equal(dest,src))
ret = -1;
goto done;
}
}
dest++; src++;
}
done:
READ_RESET();
return(ret);
}
/* EndAm29lv065_8x1_write():
* Function place holder to determine the end of the above function.
*/
void
EndAm29lv065_8x1_write(void)
{}
/* Am29lv065_8x1_ewrite():
* Erase all sectors that are part of the address space to be written,
* then write the data to that address space. This is basically a
* concatenation of the above erase & write done in one step. This is
* necessary primarily for re-writing the bootcode; because after the boot
* code is erased, there is nowhere to return so the re-write must be done
* while executing out of ram also. It is only needed in systems that are
* executing the monitor out of the same device that is being updated.
*/
int
Am29lv065_8x1_ewrite(struct flashinfo *fdev,ftype *dest,ftype *src,int bytecnt)
{
volatile ulong add;
void (*reset)();
ftype *src1, *dest1;
volatile int i;
add = (ulong)(fdev->base);
src1 = src;
dest1 = dest;
/* For each sector, if it overlaps any of the destination space */
/* then erase that sector. */
for (i=0;i<fdev->sectorcnt;i++) {
if ((((uchar *)dest) > (fdev->sectors[i].end)) ||
(((uchar *)dest+bytecnt-1) < (fdev->sectors[i].begin))) {
add += fdev->sectors[i].size;
continue;
}
SECTOR_ERASE(add);
/* Wait for sector erase to complete or timeout..
* DQ7 polling: wait for D7 to be 1.
* DQ6 toggling: wait for D6 to not toggle.
* DQ5 timeout: if DQ7 is 0, and DQ5 = 1, timeout.
*/
while(1) {
if (Is_ff(add)) {
if (Is_ff(add))
break;
}
/* Check D5 for timeout...
* In this case, there is nothing to return to
* because the flash was just erased, so just break.
*/
if (D5_Timeout(add)) {
goto quit;
}
}
add += fdev->sectors[i].size;
}
/* Read/reset command:
*/
READ_RESET();
for(i=0;i<bytecnt;i+=fdev->width) {
FLASH_WRITE(dest,src);
while(1) {
if (Is_Equal(dest,src)) {
if (Is_Equal(dest,src))
break;
}
/* Check D5 for timeout... */
if (D5_Timeout(dest)) {
if (Is_Not_Equal(dest,src))
goto quit;
continue;
}
}
dest++; src++;
}
quit:
/* Issue the read/reset command sequence:
*/
READ_RESET();
/* Wait till flash is readable, or timeout: */
for(i=0;i<FLASH_TIMEOUT;i++) {
if (Is_Equal(dest1,src1))
break;
}
for(i=0;i<FLASH_TIMEOUT;i++);
/* Now that the re-programming of flash is complete, reset:
*/
reset = RESETFUNC();
reset();
return(0); /* won't get here */
}
/* EndAm29lv065_8x1_ewrite():
* Function place holder to determine the end of the above function.
*/
void
EndAm29lv065_8x1_ewrite(void)
{}
/* Am29lv065_8x1_type():
* Run the AUTOSELECT algorithm to retrieve the manufacturer and
* device id of the flash.
*
* Note: there is one additional step that I found necessary to keep
* SGS29040 device happy... For some reason after issuing the read/reset
* command and returning (to code that actually executes out of the FLASH
* device) I was consistently getting an illegal opcode exception at
* the return location in the flash. It appears that the SGS part needs
* a bit of time after the read/reset to be able to fetch an instruction.
* Reading a value in the flash (stored in val) prior to issuing the
* command sequence, then waiting for that read to be the same after
* issuing the read/reset, assures the algorithm of not returning unless
* the flash device is readable. Note that I found this ONLY to be necessary
* for the signature read command of SGS flash.
*/
int
Am29lv065_8x1_type(struct flashinfo *fdev)
{
volatile int i;
ftype val;
ushort man, dev;
val = Read_0000();
AUTO_SELECT();
for(i=0;i<FLASH_TIMEOUT;i++) {
if (Read_0000() != val)
break;
}
man = (ushort)Read_0000(); /* manufacturer ID */
dev = (ushort)Read_0001(); /* device ID */
man &= 0xff;
dev &= 0xff;
man <<=8;
dev |= man;
fdev->id = (ushort)dev;
READ_RESET();
/* The SGS29040 seems to need this, and it doesn't hurt anything
* when using the AMD parts...
*/
for(i=0;i<FLASH_TIMEOUT;i++) {
if (val == Read_0000())
break;
}
return((int)(fdev->id));
}
/* EndAm29lv065_8x1_type():
* Function place holder to determine the end of the above function.
*/
void
EndAm29lv065_8x1_type(void)
{}
/**************************************************************************
**************************************************************************
*
* The remainder of the code in this file can be included if the
* target configuration is such that this Am29lv065 device is the only
* real flash device in the system that is to be visible to the monitor.
*
**************************************************************************
**************************************************************************
*/
#ifdef SINGLE_FLASH_DEVICE
/* FlashXXXFbuf[]:
* If FLASH_COPY_TO_RAM is defined then these arrays will contain the
* flash operation functions above. To operate on most flash devices,
* you cannot be executing out of it (there are exceptions, but
* in general, we do not assume the flash supports this). The flash
* functions are copied here, then executed through the function
* pointers established in the flashinfo structure below.
* One obvious requirement... The size of each array must be at least
* as large as the function that it will contain.
*/
#ifdef FLASH_COPY_TO_RAM
ulong FlashTypeFbuf[400];
ulong FlashEraseFbuf[400];
ulong FlashWriteFbuf[400];
ulong FlashEwriteFbuf[400];
#endif
/* FlashNamId[]:
* Used to correlate between the ID and a string representing the name
* of the flash device.
*/
struct flashdesc FlashNamId[] = {
{ AMD_29LV065, "AMD-29LV065" } /* AMD */
};
struct sectorinfo sinfo065[AMD_29LV065_NUM_SECTORS];
/* FlashBankInit():
* Initialize flash structures and determine flash device type.
*/
int
FlashBankInit(struct flashinfo *fbnk, int snum)
{
int i, ssize;
flashtype(fbnk);
switch(fbnk->id) {
case AMD_29LV065:
fbnk->sectorcnt = AMD_29LV065_NUM_SECTORS ;
ssize = AMD_29LV065_SECTOR_SIZE * fbnk->width;
fbnk->end = fbnk->base + (AMD_29LV065_TOTAL_SIZE * fbnk->width) - 1; /* 8MB each */
break;
default:
printf("Flash device id 0x%lx unknown\n", fbnk->id);
return(-1);
}
for(i=0;i<fbnk->sectorcnt;i++) {
fbnk->sectors[i].snum = snum+i;
fbnk->sectors[i].size = ssize;
fbnk->sectors[i].begin = fbnk->base + (i*ssize);
fbnk->sectors[i].end = fbnk->sectors[i].begin + ssize - 1;
fbnk->sectors[i].protected = 0;
}
return( AMD_29LV065_NUM_SECTORS ); /* should this just return fbnk->sectorcnt? (that would be a more general solution) */
}
/* FlashInit():
* Initialize data structures for each bank of flash...
*/
int
FlashInit(void)
{
int snum;
struct flashinfo *fbnk;
snum = 0;
FlashCurrentBank = 0;
/* Copy functions to ram space...
* Note that this MUST be done when cache is disabled to assure that
* the RAM is occupied by the designated block of code.
*/
#ifdef FLASH_COPY_TO_RAM
if (flashopload((ulong *)Am29lv065_8x1_type,
(ulong *)EndAm29lv065_8x1_type,
FlashTypeFbuf,sizeof(FlashTypeFbuf)) < 0)
return(-1);
if (flashopload((ulong *)Am29lv065_8x1_erase,
(ulong *)EndAm29lv065_8x1_erase,
FlashEraseFbuf,sizeof(FlashEraseFbuf)) < 0)
return(-1);
if (flashopload((ulong *)Am29lv065_8x1_ewrite,
(ulong *)EndAm29lv065_8x1_ewrite,
FlashEwriteFbuf,sizeof(FlashEwriteFbuf)) < 0)
return(-1);
if (flashopload((ulong *)Am29lv065_8x1_write,
(ulong *)EndAm29lv065_8x1_write,
FlashWriteFbuf,sizeof(FlashWriteFbuf)) < 0)
return(-1);
#endif
fbnk = &FlashBank[0];
fbnk->base = (unsigned char *)FLASH_BANK0_BASE_ADDR;
fbnk->width = FLASH_BANK0_WIDTH;
#ifdef FLASH_COPY_TO_RAM
fbnk->fltype = (int(*)())FlashTypeFbuf;
fbnk->flerase = (int(*)())FlashEraseFbuf;
fbnk->flwrite = (int(*)())FlashWriteFbuf;
fbnk->flewrite = (int(*)())FlashEwriteFbuf;
#else
fbnk->fltype = Am29lv065_8x1_type;
fbnk->flerase = Am29lv065_8x1_erase;
fbnk->flwrite = Am29lv065_8x1_write;
fbnk->flewrite = Am29lv065_8x1_ewrite;
#endif
fbnk->fllock = FlashLockNotSupported;
fbnk->sectors = sinfo065;
snum += FlashBankInit(fbnk,snum);
sectorProtect(FLASH_PROTECT_RANGE,1);
#if FLASHRAM_BASE
FlashRamInit(snum, FLASHRAM_SECTORCOUNT, &FlashBank[FLASHRAM_BANKNUM],
sinfoRAM, ramSectors);
#endif
return(0);
}
#endif /* SINGLE_FLASH_DEVICE */
#endif /* INCLUDE_FLASH */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -