⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 train.py

📁 用python实现的邮件过滤器
💻 PY
字号:
#! /usr/bin/env python# Train a classifier from Outlook Mail folders# Authors: Sean D. True, WebReply.Com, Mark Hammond# October, 2002# Copyright PSF, license under the PSF licenseimport sysimport tracebackfrom win32com.mapi import mapitry:    True, Falseexcept NameError:    # Maintain compatibility with Python 2.2    True, False = 1, 0# Note our Message Database uses PR_SEARCH_KEY, *not* PR_ENTRYID, as the# latter changes after a Move operation - see msgstore.pydef been_trained_as_ham(msg):    if msg.t is None:        return False    return msg.t == Falsedef been_trained_as_spam(msg):    if msg.t is None:        return False    return msg.t == Truedef train_message(msg, is_spam, cdata):    # Train an individual message.    # Returns True if newly added (message will be correctly    # untrained if it was in the wrong category), False if already    # in the correct category.  Catch your own damn exceptions.    # If re-classified AND rescore = True, then a new score will    # be written to the message (so the user can see some effects)    from spambayes.tokenizer import tokenize    cdata.message_db.load_msg(msg)    was_spam = msg.t    if was_spam == is_spam:        return False    # already correctly classified    # Brand new (was_spam is None), or incorrectly classified.    stream = msg.GetEmailPackageObject()    if was_spam is not None:        # The classification has changed; unlearn the old classification.        cdata.bayes.unlearn(tokenize(stream), was_spam)    # Learn the correct classification.    cdata.bayes.learn(tokenize(stream), is_spam)    msg.t = is_spam    cdata.message_db.store_msg(msg)    cdata.dirty = True    return True# Untrain a message.# Return: None == not previously trained#         True == was_spam#         False == was_hamdef untrain_message(msg, cdata):    from spambayes.tokenizer import tokenize    stream = msg.GetEmailPackageObject()    cdata.message_db.load_msg(msg)    if been_trained_as_spam(msg):        assert not been_trained_as_ham(msg), "Can't have been both!"        cdata.bayes.unlearn(tokenize(stream), True)        cdata.message_db.remove_msg(msg)        cdata.dirty = True        return True    if been_trained_as_ham(msg):        assert not been_trained_as_spam(msg), "Can't have been both!"        cdata.bayes.unlearn(tokenize(stream), False)        cdata.message_db.remove_msg(msg)        cdata.dirty = True        return False    return Nonedef train_folder(f, isspam, cdata, progress):    num = num_added = 0    for message in f.GetMessageGenerator():        if progress.stop_requested():            break        progress.tick()        try:            if train_message(message, isspam, cdata):                num_added += 1        except:            print "Error training message '%s'" % (message,)            traceback.print_exc()        num += 1    print "Checked", num, "in folder", f.name, "-", num_added, "new entries found."def real_trainer(classifier_data, config, message_store, progress):    progress.set_status(_("Counting messages"))    num_msgs = 0    for f in message_store.GetFolderGenerator(config.training.ham_folder_ids, config.training.ham_include_sub):        num_msgs += f.count    for f in message_store.GetFolderGenerator(config.training.spam_folder_ids, config.training.spam_include_sub):        num_msgs += f.count    progress.set_max_ticks(num_msgs+3)    for f in message_store.GetFolderGenerator(config.training.ham_folder_ids, config.training.ham_include_sub):        progress.set_status(_("Processing good folder '%s'") % (f.name,))        train_folder(f, 0, classifier_data, progress)        if progress.stop_requested():            return    for f in message_store.GetFolderGenerator(config.training.spam_folder_ids, config.training.spam_include_sub):        progress.set_status(_("Processing spam folder '%s'") % (f.name,))        train_folder(f, 1, classifier_data, progress)        if progress.stop_requested():            return    progress.tick()    if progress.stop_requested():        return    # Completed training - save the database    # Setup the next "stage" in the progress dialog.    progress.set_max_ticks(1)    progress.set_status(_("Writing the database..."))    classifier_data.Save()# Called back from the dialog to do the actual training.def trainer(mgr, config, progress):    rebuild = config.training.rebuild    rescore = config.training.rescore    if not config.training.ham_folder_ids and not config.training.spam_folder_ids:        progress.error(_("You must specify at least one spam or one good folder"))        return    if rebuild:        # Make a new temporary bayes database to use for training.        # If we complete, then the manager "adopts" it.        # This prevents cancelled training from leaving a "bad" db, and        # also prevents mail coming in during training from being classified        # with the partial database.        import os, manager        bayes_base = os.path.join(mgr.data_directory, "$sbtemp$default_bayes_database")        mdb_base = os.path.join(mgr.data_directory, "$sbtemp$default_message_database")        # determine which db manager to use, and create it.        ManagerClass = manager.GetStorageManagerClass()        db_manager = ManagerClass(bayes_base, mdb_base)        classifier_data = manager.ClassifierData(db_manager, mgr)        classifier_data.InitNew()    else:        classifier_data = mgr.classifier_data    # We do this in possibly 3 stages - train, filter, save    # re-scoring is much slower than training (as we actually have to save    # the message back.)    # Saving is really slow sometimes, but we only have 1 tick for that anyway    if rescore:        stages = (_("Training"), .3), (_("Saving"), .1), (_("Scoring"), .6)    else:        stages = (_("Training"), .9), (_("Saving"), .1)    progress.set_stages(stages)    real_trainer(classifier_data, config, mgr.message_store, progress)    if progress.stop_requested():        return    if rebuild:        assert mgr.classifier_data is not classifier_data        mgr.classifier_data.Adopt(classifier_data)        classifier_data = mgr.classifier_data        # If we are rebuilding, then we reset the statistics, too.        # (But output them to the log for reference).        mgr.LogDebug(1, "Session:" + "\r\n".join(\            mgr.stats.GetStats(session_only=True)))        mgr.LogDebug(1, "Total:" + "\r\n".join(mgr.stats.GetStats()))        mgr.stats.Reset()        mgr.stats.ResetTotal(permanently=True)    progress.tick()    if rescore:        # Setup the "filter now" config to what we want.        config = mgr.config.filter_now        config.only_unread = False        config.only_unseen = False        config.action_all = False        config.folder_ids = mgr.config.training.ham_folder_ids + mgr.config.training.spam_folder_ids        config.include_sub = mgr.config.training.ham_include_sub or mgr.config.training.spam_include_sub        import filter        filter.filterer(mgr, mgr.config, progress)    bayes = classifier_data.bayes    progress.set_status(_("Completed training with %d spam and %d good messages") % (bayes.nspam, bayes.nham))def main():    print "Sorry - we don't do anything here any more"if __name__ == "__main__":    main()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -