⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weaktest.py

📁 用python实现的邮件过滤器
💻 PY
字号:
#! /usr/bin/env python# A test driver using "the standard" test directory structure.# This simulates a user that gets E-mail, and only trains on fp,# fn and unsure messages. It starts by training on the first 30# messages, and from that point on well classified messages will# not be used for training. This can be used to see what the performance# of the scoring algorithm is under such conditions. Questions are:#  * How does the size of the database behave over time?#  * Does the classification get better over time?#  * Are there other combinations of parameters for the classifier#    that make this better behaved than the default values?"""Usage: %(program)s  [options] -n nsetsWhere:    -h        Show usage and exit.    -n int        Number of Set directories (Data/Spam/Set1, ... and Data/Ham/Set1, ...).        This is required.    -d decider        Name of the decider. One of %(decisionkeys)s    -m min        Minimal number of messages to train on before involving the decider.In addition, an attempt is made to merge bayescustomize.ini into the options.If that exists, it can be used to change the settings in Options.options."""from __future__ import generatorsimport sys,osfrom spambayes.Options import options, get_pathname_optionfrom spambayes import hammie, msgs, CostCounterprogram = sys.argv[0]debug = 0def usage(code, msg=''):    """Print usage message and sys.exit(code)."""    if msg:        print >> sys.stderr, msg        print >> sys.stderr    print >> sys.stderr, __doc__ % globals()    sys.exit(code)DONT_TRAIN = NoneTRAIN_AS_HAM = 1TRAIN_AS_SPAM = 2class TrainDecision:    def __call__(self,scr,is_spam):        if is_spam:            return self.spamtrain(scr)        else:            return self.hamtrain(scr)class UnsureAndFalses(TrainDecision):    def spamtrain(self,scr):        if scr < options["Categorization", "spam_cutoff"]:            return TRAIN_AS_SPAM    def hamtrain(self,scr):        if scr > options["Categorization", "ham_cutoff"]:            return TRAIN_AS_HAMclass UnsureOnly(TrainDecision):    def spamtrain(self,scr):        if options["Categorization", "ham_cutoff"] < scr < \           options["Categorization", "spam_cutoff"]:            return TRAIN_AS_SPAM    def hamtrain(self,scr):        if options["Categorization", "ham_cutoff"] < scr < \           options["Categorization", "spam_cutoff"]:            return TRAIN_AS_HAMclass All(TrainDecision):    def spamtrain(self,scr):        return TRAIN_AS_SPAM    def hamtrain(self,scr):        return TRAIN_AS_HAMclass AllBut0and100(TrainDecision):    def spamtrain(self,scr):        if scr < 0.995:            return TRAIN_AS_SPAM    def hamtrain(self,scr):        if scr > 0.005:            return TRAIN_AS_HAMclass OwnDecision(TrainDecision):    def hamtrain(self,scr):        if scr < options["Categorization", "ham_cutoff"]:            return TRAIN_AS_HAM        elif scr > options["Categorization", "spam_cutoff"]:            return TRAIN_AS_SPAM    spamtrain = hamtrainclass OwnDecisionFNCorrection(OwnDecision):    def spamtrain(self,scr):        return TRAIN_AS_SPAMdecisions={'all': All,           'allbut0and100': AllBut0and100,           'unsureonly': UnsureOnly,           'unsureandfalses': UnsureAndFalses,           'owndecision': OwnDecision,           'owndecision+fn': OwnDecisionFNCorrection,          }decisionkeys=decisions.keys()decisionkeys.sort()class FirstN:    def __init__(self,n,client):        self.client = client        self.x = 0        self.n = n    def __call__(self,scr,is_spam):        self.x += 1        if self.tooearly():            if is_spam:                return TRAIN_AS_SPAM            else:                return TRAIN_AS_HAM        else:            return self.client(scr,is_spam)    def tooearly(self):        return self.x < self.nclass Updater:    def __init__(self,d=None):        self.setd(d)    def setd(self,d):        self.d=ddef drive(nsets,decision):    print options.display()    spamdirs = [get_pathname_option("TestDriver", "spam_directories") % \                i for i in range(1, nsets+1)]    hamdirs  = [get_pathname_option("TestDriver", "ham_directories") % \                i for i in range(1, nsets+1)]    spamfns = [(x,y,1) for x in spamdirs for y in os.listdir(x)]    hamfns = [(x,y,0) for x in hamdirs for y in os.listdir(x)]    nham = len(hamfns)    nspam = len(spamfns)    cc = CostCounter.nodelay()    allfns = {}    for fn in spamfns+hamfns:        allfns[fn] = None    d = hammie.open('weaktest.db', False)    hamtrain = 0    spamtrain = 0    n = 0    for dir,name, is_spam in allfns.iterkeys():        n += 1        m=msgs.Msg(dir, name).guts        if debug > 1:            print "trained:%dH+%dS"%(hamtrain,spamtrain)        scr=d.score(m)        if debug > 1:            print "score:%.3f"%scr        if not decision.tooearly():            if is_spam:                if debug > 0:                    print "Spam with score %.2f"%scr                cc.spam(scr)            else:                if debug > 0:                    print "Ham with score %.2f"%scr                cc.ham(scr)        de = decision(scr,is_spam)        if de == TRAIN_AS_SPAM:            d.train_spam(m)            spamtrain += 1        elif de == TRAIN_AS_HAM:            d.train_ham(m)            hamtrain += 1        if n % 100 == 0:            print "%5d trained:%dH+%dS wrds:%d"%(                n, hamtrain, spamtrain, len(d.bayes.wordinfo))            print cc    print "="*70    print "%5d trained:%dH+%dS wrds:%d"%(        n, hamtrain, spamtrain, len(d.bayes.wordinfo))    print ccdef main():    global debug    import getopt    try:        opts, args = getopt.getopt(sys.argv[1:], 'vd:hn:m:')    except getopt.error, msg:        usage(1, msg)    nsets = None    decision = decisions['unsureonly']    m = 10    for opt, arg in opts:        if opt == '-h':            usage(0)        elif opt == '-n':            nsets = int(arg)        elif opt == '-v':            debug += 1        elif opt == '-m':            m = int(arg)        elif opt == '-d':            if not decisions.has_key(arg):                usage(1,'Unknown decisionmaker')            decision = decisions[arg]    if args:        usage(1, "Positional arguments not supported")    if nsets is None:        usage(1, "-n is required")    drive(nsets,decision=FirstN(m,decision()))if __name__ == "__main__":    main()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -