📄 test_stats.py
字号:
# Test spambayes.Stats module.import osimport sysimport timeimport unittestimport sb_test_supportsb_test_support.fix_sys_path()from spambayes.Stats import Statsfrom spambayes.Options import optionsfrom spambayes.message import MessageInfoPickle, Messageclass StatsTest(unittest.TestCase): def setUp(self): self.messageinfo_db_name = "__unittest.pik" self.messageinfo_db = MessageInfoPickle(self.messageinfo_db_name) self.s = Stats(options, self.messageinfo_db) Message.message_info_db = self.messageinfo_db def tearDown(self): if os.path.exists(self.messageinfo_db_name): os.remove(self.messageinfo_db_name) def test_from_date_unset(self): self.assertEqual(None, self.s.from_date) def test_set_date(self): now = time.time() self.s.ResetTotal(permanently=True) self.assertEqual(now, self.s.from_date) for stat in ["num_ham", "num_spam", "num_unsure", "num_trained_spam", "num_trained_spam_fn", "num_trained_ham", "num_trained_ham_fp",]: self.assertEqual(self.s.totals[stat], 0) # Check that it was stored, too. self.messageinfo_db.close() self.messageinfo_db = MessageInfoPickle(self.messageinfo_db_name) self.s = Stats(options, self.messageinfo_db) self.assertEqual(now, self.s.from_date) def test_no_messages(self): self.assertEqual(self.s.GetStats(), ["Messages classified: 0"]) def test_reset_session(self): self.s.RecordClassification(.2) self.s.RecordClassification(.1) self.s.RecordClassification(.4) self.s.RecordClassification(.91) self.s.RecordTraining(True, 0.1) self.s.RecordTraining(True, 0.91) self.s.RecordTraining(False, 0.1) self.s.RecordTraining(False, 0.91) self.assertNotEqual(self.s.num_ham, 0) self.assertNotEqual(self.s.num_spam, 0) self.assertNotEqual(self.s.num_unsure, 0) self.assertNotEqual(self.s.num_trained_spam, 0) self.assertNotEqual(self.s.num_trained_spam_fn, 0) self.assertNotEqual(self.s.num_trained_ham, 0) self.assertNotEqual(self.s.num_trained_ham_fp, 0) self.s.Reset() self.assertEqual(self.s.num_ham, 0) self.assertEqual(self.s.num_spam, 0) self.assertEqual(self.s.num_unsure, 0) self.assertEqual(self.s.num_trained_spam, 0) self.assertEqual(self.s.num_trained_spam_fn, 0) self.assertEqual(self.s.num_trained_ham, 0) self.assertEqual(self.s.num_trained_ham_fp, 0) def test_record_ham(self): self.s.RecordClassification(0.0) self.assertEqual(self.s.num_ham, 1) self.s.RecordClassification(0.0) self.assertEqual(self.s.num_ham, 2) def test_record_spam(self): self.s.RecordClassification(1.0) self.assertEqual(self.s.num_spam, 1) self.s.RecordClassification(1.0) self.assertEqual(self.s.num_spam, 2) def test_record_unsure(self): self.s.RecordClassification(0.5) self.assertEqual(self.s.num_unsure, 1) self.s.RecordClassification(0.5) self.assertEqual(self.s.num_unsure, 2) def test_record_fp(self): self.s.RecordTraining(True, 1.0) self.assertEqual(self.s.num_trained_ham, 1) self.assertEqual(self.s.num_trained_ham_fp, 1) def test_record_fn(self): self.s.RecordTraining(False, 0.0) self.assertEqual(self.s.num_trained_spam, 1) self.assertEqual(self.s.num_trained_spam_fn, 1) def test_record_fp_class(self): self.s.RecordTraining(True, old_class=options["Headers", "header_spam_string"]) self.assertEqual(self.s.num_trained_ham, 1) self.assertEqual(self.s.num_trained_ham_fp, 1) def test_record_fn_class(self): self.s.RecordTraining(False, old_class=options["Headers", "header_ham_string"]) self.assertEqual(self.s.num_trained_spam, 1) self.assertEqual(self.s.num_trained_spam_fn, 1) def test_no_record_fp(self): self.s.RecordTraining(True) self.assertEqual(self.s.num_trained_ham, 1) self.assertEqual(self.s.num_trained_ham_fp, 0) def test_no_record_fn(self): self.s.RecordTraining(False) self.assertEqual(self.s.num_trained_spam, 1) self.assertEqual(self.s.num_trained_spam_fn, 0) def test_record_train_spam(self): self.s.RecordTraining(False, 1.0) self.assertEqual(self.s.num_trained_spam, 1) self.assertEqual(self.s.num_trained_spam_fn, 0) def test_record_train_ham(self): self.s.RecordTraining(True, 0.0) self.assertEqual(self.s.num_trained_ham, 1) self.assertEqual(self.s.num_trained_ham_fp, 0) def test_calculate_persistent_stats(self): # Make sure it is empty to start with. for stat in ["num_ham", "num_spam", "num_unsure", "num_trained_spam", "num_trained_spam_fn", "num_trained_ham", "num_trained_ham_fp",]: self.assertEqual(self.s.totals[stat], 0) # Stuff some things in to calculate. msg = Message('0') msg.RememberTrained(True) msg.RememberClassification(options['Headers','header_spam_string']) msg = Message('1') msg.RememberTrained(False) msg.RememberClassification(options['Headers','header_spam_string']) msg = Message('2') msg.RememberTrained(True) msg.RememberClassification(options['Headers','header_ham_string']) msg = Message('3') msg.RememberTrained(False) msg.RememberClassification(options['Headers','header_ham_string']) msg = Message('4') msg.RememberClassification(options['Headers','header_ham_string']) msg = Message('5') msg.RememberTrained(False) msg.RememberClassification(options['Headers','header_unsure_string']) msg = Message('6') msg.RememberTrained(True) msg.RememberClassification(options['Headers','header_unsure_string']) msg = Message('7') msg.RememberClassification(options['Headers','header_unsure_string']) msg = Message('8') msg.RememberClassification(options['Headers','header_unsure_string']) self.s.CalculatePersistentStats() self.assertEqual(self.s.totals["num_ham"], 3) self.assertEqual(self.s.totals["num_spam"], 2) self.assertEqual(self.s.totals["num_unsure"], 4) self.assertEqual(self.s.totals["num_trained_spam"], 1) self.assertEqual(self.s.totals["num_trained_spam_fn"], 1) self.assertEqual(self.s.totals["num_trained_ham"], 1) self.assertEqual(self.s.totals["num_trained_ham_fp"], 1) def test_CalculateAdditional(self): data = {} data["num_seen"] = 45 data["num_ham"] = 23 data["num_spam"] = 10 data["num_unsure"] = 12 data["num_trained_spam_fn"] = 4 data["num_trained_ham_fp"] = 3 data["num_trained_ham"] = 7 data["num_trained_spam"] = 5 data["num_unsure_trained_ham"] = 2 data["num_unsure_trained_spam"] = 1 new_data = self.s._CalculateAdditional(data) self.assertEqual(new_data["perc_ham"], 100.0 * data["num_ham"] / data["num_seen"]) self.assertEqual(new_data["perc_spam"], 100.0 * data["num_spam"] / data["num_seen"]) self.assertEqual(new_data["perc_unsure"], 100.0 * data["num_unsure"] / data["num_seen"]) self.assertEqual(new_data["num_ham_correct"], data["num_ham"] - data["num_trained_spam_fn"]) self.assertEqual(new_data["num_spam_correct"], data["num_spam"] - data["num_trained_ham_fp"]) self.assertEqual(new_data["num_correct"], new_data["num_ham_correct"] + new_data["num_spam_correct"]) self.assertEqual(new_data["num_incorrect"], data["num_trained_spam_fn"] + data["num_trained_ham_fp"]) self.assertEqual(new_data["perc_correct"], 100.0 * new_data["num_correct"] / data["num_seen"]) self.assertEqual(new_data["perc_incorrect"], 100.0 * new_data["num_incorrect"] / data["num_seen"]) self.assertEqual(new_data["perc_fp"], 100.0 * data["num_trained_ham_fp"] / data["num_seen"]) self.assertEqual(new_data["perc_fn"], 100.0 * data["num_trained_spam_fn"] / data["num_seen"]) self.assertEqual(new_data["num_unsure_trained_ham"], data["num_trained_ham"] - data["num_trained_ham_fp"]) self.assertEqual(new_data["num_unsure_trained_spam"], data["num_trained_spam"] - data["num_trained_spam_fn"]) self.assertEqual(new_data["num_unsure_not_trained"], data["num_unsure"] - data["num_unsure_trained_ham"] - data["num_unsure_trained_spam"]) self.assertEqual(new_data["perc_unsure_trained_ham"], 100.0 * data["num_unsure_trained_ham"] / data["num_unsure"]) self.assertEqual(new_data["perc_unsure_trained_spam"], 100.0 * data["num_unsure_trained_spam"] / data["num_unsure"]) self.assertEqual(new_data["perc_unsure_not_trained"], 100.0 * new_data["num_unsure_not_trained"] / data["num_unsure"]) self.assertEqual(new_data["total_ham"], new_data["num_ham_correct"] + data["num_trained_ham"]) self.assertEqual(new_data["total_spam"], new_data["num_spam_correct"] + data["num_trained_spam"]) self.assertEqual(new_data["perc_ham_incorrect"], 100.0 * data["num_trained_ham_fp"] / data["total_ham"]) self.assertEqual(new_data["perc_ham_unsure"], 100.0 * data["num_unsure_trained_ham"] / data["total_ham"]) self.assertEqual(new_data["perc_ham_incorrect_or_unsure"], 100.0 * (data["num_trained_ham_fp"] + data["num_unsure_trained_ham"]) / data["total_ham"]) self.assertEqual(new_data["perc_spam_correct"], 100.0 * data["num_spam_correct"] / data["total_spam"]) self.assertEqual(new_data["perc_spam_unsure"], 100.0 * data["num_unsure_trained_spam"] / data["total_spam"]) self.assertEqual(new_data["perc_spam_correct_or_unsure"], 100.0 * (data["num_spam_correct"] + data["num_unsure_trained_spam"]) / data["total_spam"]) self.assertEqual(new_data["total_cost"], data["num_trained_ham_fp"] * options["TestDriver", "best_cutoff_fp_weight"] + \ data["num_trained_spam_fn"] * options["TestDriver", "best_cutoff_fn_weight"] + \ data["num_unsure"] * options["TestDriver", "best_cutoff_unsure_weight"]) self.assertEqual(new_data["cost_savings"], data["num_spam"] * options["TestDriver", "best_cutoff_fn_weight"] - data["total_cost"]) def test_AddPercentStrings(self): for i in xrange(10): self._test_AddPercentStrings(i)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -