⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hammie.py

📁 用python实现的邮件过滤器
💻 PY
字号:
#! /usr/bin/env pythonfrom spambayes import mboxutilsfrom spambayes import storagefrom spambayes.Options import optionsfrom spambayes.tokenizer import tokenizetry:    True, Falseexcept NameError:    # Maintain compatibility with Python 2.2    True, False = 1, 0class Hammie:    """A spambayes mail filter.    This implements the basic functionality needed to score, filter, or    train.    """    def __init__(self, bayes):        self.bayes = bayes    def _scoremsg(self, msg, evidence=False):        """Score a Message.        msg can be a string, a file object, or a Message object.        Returns the probability the message is spam.  If evidence is        true, returns a tuple: (probability, clues), where clues is a        list of the words which contributed to the score.        """        return self.bayes.spamprob(tokenize(msg), evidence)    def formatclues(self, clues, sep="; "):        """Format the clues into something readable."""        return sep.join(["%r: %.2f" % (word, prob)                         for word, prob in clues                         if (word[0] == '*' or                             prob <= options["Headers",                                             "clue_mailheader_cutoff"] or                             prob >= 1.0 - options["Headers",                                                   "clue_mailheader_cutoff"])])    def score(self, msg, evidence=False):        """Score (judge) a message.        msg can be a string, a file object, or a Message object.        Returns the probability the message is spam.  If evidence is        true, returns a tuple: (probability, clues), where clues is a        list of the words which contributed to the score.        """        return self._scoremsg(msg, evidence)    def score_and_filter(self, msg, header=None, spam_cutoff=None,                         ham_cutoff=None, debugheader=None,                         debug=None, train=None):        """Score (judge) a message and add a disposition header.        msg can be a string, a file object, or a Message object.        Optionally, set header to the name of the header to add, and/or        spam_cutoff/ham_cutoff to the probability values which must be met        or exceeded for a message to get a 'Spam' or 'Ham' classification.        An extra debugging header can be added if 'debug' is set to True.        The name of the debugging header is given as 'debugheader'.        If 'train' is True, also train on the result of scoring the        message (ie. train as ham if it's ham, train as spam if it's        spam).  If the message already has a trained header, it will be        untrained first.  You'll want to be very dilligent about        retraining mistakes if you use this option.        All defaults for optional parameters come from the Options file.        Returns the score and same message with a new disposition header.        """        if header == None:            header = options["Headers", "classification_header_name"]        if spam_cutoff == None:            spam_cutoff = options["Categorization", "spam_cutoff"]        if ham_cutoff == None:            ham_cutoff = options["Categorization", "ham_cutoff"]        if debugheader == None:            debugheader = options["Headers", "evidence_header_name"]        if debug == None:            debug = options["Headers", "include_evidence"]        if train == None:            train = options["Hammie", "train_on_filter"]        msg = mboxutils.get_message(msg)        try:            del msg[header]        except KeyError:            pass        if train:            self.untrain_from_header(msg)        prob, clues = self._scoremsg(msg, True)        if prob < ham_cutoff:            is_spam = False            disp = options["Headers", "header_ham_string"]        elif prob > spam_cutoff:            is_spam = True            disp = options["Headers", "header_spam_string"]        else:            is_spam = False            disp = options["Headers", "header_unsure_string"]        if train:            self.train(msg, is_spam, True)        basic_disp = disp        disp += "; %.*f" % (options["Headers", "header_score_digits"], prob)        if options["Headers", "header_score_logarithm"]:            if prob<=0.005 and prob>0.0:                import math                x=-math.log10(prob)                disp += " (%d)"%x            if prob>=0.995 and prob<1.0:                import math                x=-math.log10(1.0-prob)                disp += " (%d)"%x        del msg[header]        msg.add_header(header, disp)        # Obey notate_to and notate_subject.        for header in ('to', 'subject'):            if basic_disp in options["Headers", "notate_"+header]:                orig = msg[header]                del msg[header]                msg[header] = "%s,%s" % (basic_disp, orig)        if debug:            disp = self.formatclues(clues)            del msg[debugheader]            msg.add_header(debugheader, disp)        result = mboxutils.as_string(msg, unixfrom=(msg.get_unixfrom()                                                    is not None))        return prob, result    def filter(self, msg, header=None, spam_cutoff=None,               ham_cutoff=None, debugheader=None,               debug=None, train=None):        prob, result = self.score_and_filter(            msg, header, spam_cutoff, ham_cutoff, debugheader,            debug, train)        return result    def train(self, msg, is_spam, add_header=False):        """Train bayes with a message.        msg can be a string, a file object, or a Message object.        is_spam should be 1 if the message is spam, 0 if not.        If add_header is True, add a header with how it was trained (in        case we need to untrain later)        """        self.bayes.learn(tokenize(msg), is_spam)        if add_header:            if is_spam:                trained = options["Headers", "header_spam_string"]            else:                trained = options["Headers", "header_ham_string"]            del msg[options["Headers", "trained_header_name"]]            msg.add_header(options["Headers", "trained_header_name"], trained)    def untrain(self, msg, is_spam):        """Untrain bayes with a message.        msg can be a string, a file object, or a Message object.        is_spam should be True if the message is spam, False if not.        """        self.bayes.unlearn(tokenize(msg), is_spam)    def untrain_from_header(self, msg):        """Untrain bayes based on X-Spambayes-Trained header.        msg can be a string, a file object, or a Message object.        If no such header is present, nothing happens.        If add_header is True, add a header with how it was trained (in        case we need to untrain later)        """        msg = mboxutils.get_message(msg)        trained = msg.get(options["Headers", "trained_header_name"])        if not trained:            return        del msg[options["Headers", "trained_header_name"]]        if trained == options["Headers", "header_ham_string"]:            self.untrain_ham(msg)        elif trained == options["Headers", "header_spam_string"]:            self.untrain_spam(msg)        else:            raise ValueError('%s header value unrecognized'                             % options["Headers", "trained_header_name"])    def train_ham(self, msg, add_header=False):        """Train bayes with ham.        msg can be a string, a file object, or a Message object.        If add_header is True, add a header with how it was trained (in        case we need to untrain later)        """        self.train(msg, False, add_header)    def train_spam(self, msg, add_header=False):        """Train bayes with spam.        msg can be a string, a file object, or a Message object.        If add_header is True, add a header with how it was trained (in        case we need to untrain later)        """        self.train(msg, True, add_header)    def untrain_ham(self, msg):        """Untrain bayes with a message previously trained as ham.        msg can be a string, a file object, or a Message object.        """        self.untrain(msg, False)    def untrain_spam(self, msg):        """Untrain bayes with a message previously traned as spam.        msg can be a string, a file object, or a Message object.        """        self.untrain(msg, True)    def store(self):        """Write out the persistent store.        This makes sure the persistent store reflects what is currently        in memory.  You would want to do this after a write and before        exiting.        """        self.bayes.store()def open(filename, useDB="dbm", mode='r'):    """Open a file, returning a Hammie instance.    mode is used as the flag to open DBDict objects.  'c' for read-write    (create if needed), 'r' for read-only, 'w' for read-write.    """    return Hammie(storage.open_storage(filename, useDB, mode))if __name__ == "__main__":    # Everybody's used to running hammie.py.  Why mess with success?  ;)    import hammiebulk    hammiebulk.main()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -