⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tester.py

📁 用python实现的邮件过滤器
💻 PY
字号:
from spambayes.Options import optionstry:    True, Falseexcept NameError:    # Maintain compatibility with Python 2.2    True, False = 1, 0class Test:    # Pass a classifier instance (an instance of Bayes).    # Loop:    #     # Train the classifer with new ham and spam.    #     train(ham, spam) # this implies reset_test_results    #     Loop:    #         Optional:    #             # Possibly fiddle the classifier.    #             set_classifier()    #             # Forget smessages the classifier was trained on.    #             untrain(ham, spam) # this implies reset_test_results    #         Optional:    #             reset_test_results()    #         # Predict against (presumably new) examples.    #         predict(ham, spam)    #         Optional:    #             suck out the results, via instance vrbls and    #             false_negative_rate(), false_positive_rate(),    #             false_negatives(), and false_positives()    def __init__(self, classifier):        self.set_classifier(classifier)        self.reset_test_results()    # Tell the tester which classifier to use.    def set_classifier(self, classifier):        self.classifier = classifier    def reset_test_results(self):        # The number of ham and spam instances tested.        self.nham_tested = self.nspam_tested = 0        # The number of test instances correctly and incorrectly classified.        self.nham_right = 0        self.nham_wrong = 0        self.nham_unsure = 0;        self.nspam_right = 0        self.nspam_wrong = 0        self.nspam_unsure = 0;        # Lists of bad predictions.        self.ham_wrong_examples = []    # False positives:  ham called spam.        self.spam_wrong_examples = []   # False negatives:  spam called ham.        self.unsure_examples = []       # ham and spam in middle ground    # Train the classifier on streams of ham and spam.  Updates probabilities    # before returning, and resets test results.    def train(self, hamstream=None, spamstream=None):        self.reset_test_results()        learn = self.classifier.learn        if hamstream is not None:            for example in hamstream:                learn(example, False)        if spamstream is not None:            for example in spamstream:                learn(example, True)    # Untrain the classifier on streams of ham and spam.  Updates    # probabilities before returning, and resets test results.    def untrain(self, hamstream=None, spamstream=None):        self.reset_test_results()        unlearn = self.classifier.unlearn        if hamstream is not None:            for example in hamstream:                unlearn(example, False)        if spamstream is not None:            for example in spamstream:                unlearn(example, True)    # Run prediction on each sample in stream.  You're swearing that stream    # is entirely composed of spam (is_spam True), or of ham (is_spam False).    # Note that mispredictions are saved, and can be retrieved later via    # false_negatives (spam mistakenly called ham) and false_positives (ham    # mistakenly called spam).  For this reason, you may wish to wrap examples    # in a little class that identifies the example in a useful way, and whose    # __iter__ produces a token stream for the classifier.    #    # If specified, callback(msg, spam_probability) is called for each    # msg in the stream, after the spam probability is computed.    def predict(self, stream, is_spam, callback=None):        guess = self.classifier.spamprob        for example in stream:            prob = guess(example)            if callback:                callback(example, prob)            is_ham_guessed  = prob <  options["Categorization", "ham_cutoff"]            is_spam_guessed = prob >= options["Categorization", "spam_cutoff"]            if is_spam:                self.nspam_tested += 1                if is_spam_guessed:                    self.nspam_right += 1                elif is_ham_guessed:                    self.nspam_wrong += 1                    self.spam_wrong_examples.append(example)                else:                    self.nspam_unsure += 1                    self.unsure_examples.append(example)            else:                self.nham_tested += 1                if is_ham_guessed:                    self.nham_right += 1                elif is_spam_guessed:                    self.nham_wrong += 1                    self.ham_wrong_examples.append(example)                else:                    self.nham_unsure += 1                    self.unsure_examples.append(example)        assert (self.nham_right + self.nham_wrong + self.nham_unsure ==                self.nham_tested)        assert (self.nspam_right + self.nspam_wrong + self.nspam_unsure ==                self.nspam_tested)    def false_positive_rate(self):        """Percentage of ham mistakenly identified as spam, in 0.0..100.0."""        return self.nham_wrong * 1e2 / (self.nham_tested or 1)    def false_negative_rate(self):        """Percentage of spam mistakenly identified as ham, in 0.0..100.0."""        return self.nspam_wrong * 1e2 / (self.nspam_tested or 1)    def unsure_rate(self):        return ((self.nham_unsure + self.nspam_unsure) * 1e2 /                ((self.nham_tested + self.nspam_tested) or 1))    def false_positives(self):        return self.ham_wrong_examples    def false_negatives(self):        return self.spam_wrong_examples    def unsures(self):        return self.unsure_examplesclass _Example:    def __init__(self, name, words):        self.name = name        self.words = words    def __iter__(self):        return iter(self.words)_easy_test = """    >>> from spambayes.classifier import Bayes    >>> from spambayes.Options import options    >>> options["Categorization", "ham_cutoff"] = options["Categorization", "spam_cutoff"] = 0.5    >>> good1 = _Example('', ['a', 'b', 'c'])    >>> good2 = _Example('', ['a', 'b'])    >>> bad1 = _Example('', ['c', 'd'])    >>> t = Test(Bayes())    >>> t.train([good1, good2], [bad1])    >>> t.predict([_Example('goodham', ['a', 'b']),    ...            _Example('badham', ['d'])    # FP    ...           ], False)    >>> t.predict([_Example('goodspam', ['d']),    ...            _Example('badspam1', ['a']), # FN    ...            _Example('badspam2', ['a', 'b']),    # FN    ...            _Example('badspam3', ['d', 'a', 'b'])    # FN    ...           ], True)    >>> t.nham_tested    2    >>> t.nham_right, t.nham_wrong    (1, 1)    >>> t.false_positive_rate()    50.0    >>> [e.name for e in t.false_positives()]    ['badham']    >>> t.nspam_tested    4    >>> t.nspam_right, t.nspam_wrong    (1, 3)    >>> t.false_negative_rate()    75.0    >>> [e.name for e in t.false_negatives()]    ['badspam1', 'badspam2', 'badspam3']    >>> [e.name for e in t.unsures()]    []    >>> t.unsure_rate()    0.0"""__test__ = {'easy': _easy_test}def _test():    import doctest, Tester    doctest.testmod(Tester)if __name__ == '__main__':    _test()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -